
ADVANCED SEMINAR FOR VLSI TECHNOLOGY, WINTER TERM 2021/22 1

A Comparison of Neural Network Computation
Architectures for Low-Power Edge Applications

Fabian Peddinghaus

Abstract—Neural networks (NNs) are widely used for machine
learning (ML) applications, including speech recognition and
object detection. While they deliver superb performance on
many ML tasks, they come at the cost of high computational
effort. Thus, deploying NNs on low-power edge devices is very
challenging. A common solution to this problem involves real-
time communication with external computing systems, such as
cloud servers, to which sensor data is off-loaded for further
processing. However, this increases latency, reduces reliability,
and raises privacy concerns. Deploying NNs on specialized
processing architectures at the edge of the network close to the
data sources alleviates the aforementioned issues by performing
computations locally without the need for a network connection.
Despite their apparent advantages, edge-computing systems have
to maintain energy efficiency and computational performance
without reducing application accuracy or increasing hardware
costs. Thus, numerous architectures have been devised and
deployed in recent years, enabling the widespread adoption of
NNs in intelligent edge systems.

This paper provides a general overview of three computation
architectures and their peculiarities to resolve the issue of efficient
low-power NN inference at the edge. In particular, it presents a
comparison of classical CPUs, vector processors, and specialized
hardware accelerators.

I. INTRODUCTION

Resource-constrained edge devices, like smartwatches and
smart speakers, have become ubiquitous in recent years. They
commonly employ machine learning (ML) algorithms to cope
with the large amounts of data that their sensors generate [1].
In particular, neural networks (NNs) have reached widespread
adoption, allowing developers to provide intelligent edge sys-
tems with complex data analysis capabilities, such as gesture
detection and keyword spotting. While NNs can detect data
patterns that would be difficult to model with conventional
algorithms, their high computational resource demand makes
them challenging to implement. Many battery-powered ML
applications are additionally limited to low power consump-
tion, making computing efficiency a fundamental design ob-
jective for low-power ML systems [2].

The rapid advancements of ML algorithm research place
additional pressure on developers to quickly incorporate newly
introduced network features, requiring short hardware and
software development times. While traditional CPUs are re-
markably flexible due to their inherent generality, the slow-
down of Moores Law has made them a suboptimal choice for
power-constrained embedded systems [3]. Nevertheless, what
remains generally constant in ML inference are parallelizable

F. Peddinghaus is with the Department of Electrical and Computer
Engineering, Technical University of Munich, 80333 Munich, Germany
E-Mail: f.peddinghaus@tum.de.

multiply-and-accumulate (MAC) operations, which form the
basis of matrix-vector and matrix-matrix multiplications. Due
to their inherent data-level parallelism (DLP), such operations
lend themselves to acceleration through specialized computing
paradigms, such as vector computations or hardware acceler-
ators.

While many different approaches have been taken to re-
duce the power consumption and increase the performance of
deeply embedded ML systems, the here presented comparison
concerns itself only with the high-level hardware architecture
of computing systems. To that end, this paper analyzes and
compares classical CPUs, vector processors, and specialized
hardware accelerators with regard to their temporal and spatial
properties, as well as their efficiency and flexibility when
running NN workloads. It does not cover distinct microarchi-
tectural or technology-specific optimizations like memristor
arrays or other non-conventional arithmetic [1, 2, 4]. Fur-
thermore, it does also not include model-specific optimization
techniques, such as tensor decomposition, data quantization,
or network sparsification [5, 6].

The paper is organized as follows: Section II presents
related surveys that complement this work, while Section III
introduces background information on neural networks. This
is followed by an overview and comparison of computing
architectures in Section IV and a summary in Section V.

II. RELATED WORK

Numerous surveys have been conducted, each presenting
existing neural network computing architectures, accelerator
designs and implementations, as well as describing their
techniques and comparing their performance. A good gen-
eral overview of state-of-the-art academic and industrial ML
hardware accelerators is provided in the 3-part survey series
released by Reuther et al. in 2019 [7], 2020 [8], and 2021 [9].

A comprehensive overview of tools, methods, and archi-
tectures for low-power NN accelerators can be found in
[2]. A similarly rigorous survey with a general view on
software design patterns, loop scheduling and optimization
paradigms from application software to hardware-level data
flow is presented in [5]. Deng et al. [6], as well as [10], provide
a more optimization-focused approach emphasizing model
optimization and compression techniques in conjunction with
hardware architectures.

Sze et al. [1] provide a detailed survey on the efficient
processing of NNs, incorporating historical aspects, common
network models, training frameworks, and popular datasets. In
2020 Sze and her colleagues released their work as a book in



ADVANCED SEMINAR FOR VLSI TECHNOLOGY, WINTER TERM 2021/22 2

CPU Vector Accelerator

time space
time

space

sp
ac

e

 Temporal                                       Spatial  

 Flexibility                                    Efficiency

Fig. 1: Taxonomy of different computation architectures with respect
to spatial and temporal properties.

the Synthesis Lectures on Computer Architecture series [3]. It
provides a comprehensive introduction and broad overview of
machine learning computer architectures, covering numerous
low-power and edge computing aspects.

III. BACKGROUND ON NEURAL NETWORKS

The fundamental component of a neural network (NN) is
the neuron. For each neuron, the inputs are multiplied with
the neuron’s weights and added together with a bias term. A
non-linear activation function is then applied to compute the
neuron’s output. In fully connected neural networks (FCNNs),
every neuron in a layer is connected to all its predecessors. The
weights of each neuron are trained by using vast amounts of
training data and a method called back-propagation. In back-
propagation, the detection error of the output is propagated
backwards through the network, and every weight is adjusted
proportionately to its relative share of the output error [3, 6].

Although FCNNs can be used to learn features and classify
data, their high degree of connectivity makes them impractical
for larger inputs such as high-resolution images. Moreover,
FCNNs treat inputs that are close together or far apart equiv-
alently, ignoring the spatial structure present in images [5].
To overcome these limitations, convolutional neural networks
(CNNs) exploit the idea of local receptive fields and shared
weights, reducing the number of free parameters and thus
enabling deeper networks. CNNs employ so-called kernels,
which they slide across the input matrix of the layer. Pooling
layers help reduce the number of activations of a layer
and consequently decrease the memory requirements and the
number of computations to be performed [3, 5].

Inference of both FCNNs and CNNs can generally be
reduced to simple vector-matrix or matrix-matrix multiplica-
tions. However, while FCNNs and CNNs comprise a large
majority of current ML workloads, many more NN architec-
tures exist. Furthermore, most NNs employ additional layers
and activations, which are generally more complex to compute
[3, 5, 6]. Because NNs are a prevalent research topic, novel
architectures are constantly being introduced, further diversify-
ing the landscape of NN models [11]. Thus, NN computation
systems require a certain degree of generality and flexibility in
order to be able to compute the large and constantly evolving
volume of NN models [12, 13].

IV. COMPARISON

This section provides a comparison of three distinct ar-
chitectures for efficient machine learning at the edge. It
presents and compares traditional CPUs, vector machines,
and specialized ML accelerators. As already pointed out,
this section focuses on providing a high-level overview of
each architecture by detailing its strengths and weaknesses.
Additionally, it provides examples of real-world implemen-
tations from academia and industry. Before diving into the
actual comparison, the following subsection briefly introduces
the difference between spatial and temporal architectures in
accordance with Figure 1.

A. Temporal vs. Spatial

A fundamental property of temporal architectures is that
they feature a central control unit that schedules instructions
and distributes computations across one or many processing
elements (PEs). Temporal designs are commonly based on
load-store architectures, in which data is moved between
the physically separated computational and memory units.
Temporal architectures typically operate on scalar values and
are generally characterized through a single instruction, sin-
gle data (SISD) processing scheme [2]. In order to share
resources, temporal architectures employ time-multiplexing of
the execution. While such an approach reduces the resource
requirements, it leads to an increase of overall execution
time [14]. The most prominent embodiment of a temporal
architecture is the widespread von Neumann based central
processing unit (CPU). Moreover, some authors argue that
the traditional vector architecture, with its single instruction
multiple data (SIMD) scheme, can also be categorized as a
temporal architecture [2, 15].

In contrast to temporal architectures, spatial architectures
allow their PEs to move data between adjacent PEs. They
reduce memory accesses and overall data traffic by employing
local buffers. Systolic arrays (see Figure 2) are the most
prominent representatives of such a spatial computation pattern
in the realm of ML accelerators. They enable efficient data
reuse by employing a tightly coupled 2D architecture [2]. Such
architectures can be efficiently utilized when implementing
matrix multiplication through spatial concatenation of com-
putations, thus minimizing memory accesses [14].

The classification of temporal and spatial architectures can
be ambiguous, depending on the viewpoint or abstraction level.
It should not be seen as a binary categorization but rather as
a continuous mapping (see Figure 1).

B. CPU

Employing low-power CPU cores for ML and NN work-
loads results in low-area, low-power, and low-cost computation
systems, making it possible to deploy them in a wide range of
applications. This gave rise to TinyML [16], which consists
of running NN models on extremely resource-constrained
microcontrollers with a power consumption of less than 1mW.
The authors from [17] argue that edge devices that have to
cope with highly time-varying workloads, characterized by



ADVANCED SEMINAR FOR VLSI TECHNOLOGY, WINTER TERM 2021/22 3

bursts of compute-intensive operations amid long periods of
low activity, as common in many ML edge applications, can
significantly benefit from highly-efficient CPU cores. Addi-
tionally, they suggest that architectural heterogeneity inside
these cores could potentially provide a possible solution to
harmonize competing optimization goals. They present two
ultra-low-power RISC-V cores, each consuming significantly
less than 1mW and run a number of ML and NN benchmarks
on them. These systems are so energy efficient that they could
theoretically run for months on a single coin battery.

ARM provides a similar lineup of ultra-low-power cores
through their Cortex-M0 series microcontrollers [18]. Akin
to the RISC-V cores, they can run ML workloads while
consuming only minimal amounts of energy and chip area.
The whole CPU core can be synthesized using not more
than 15KGE [17], making them highly cost-effective. Together
with machine learning libraries, like CMSIS-NN [19] and
the TensorFlow Lite for Microcontrollers (TFLM) software
framework [20], these processors provide a very attractive
solution for deeply embedded systems and ultra-low-power
edge devices.

C. Vector Architectures

Instead of operating on only a single data value at a time,
vector architectures simultaneously operate on an array of data
values according to the SIMD pattern. In contrast to manycore
architectures or GPUs, all execution units are synchronized
and respond to a single instruction issued from a single
program counter (PC). Thereby, they efficiently exploit the in-
herent data-level parallelism (DLP) of ML workloads. Through
vector instructions, the compiler is able to expose DLP to the
hardware, thus reducing the complexity otherwise encountered
in out-of-order machines and enabling more efficient parallel
compute. Another key advantage of vector architectures is that
they amortize the cost of control logic over many execution
units while simultaneously reducing the required instruction
memory and bandwidth.

Vector processors utilize multiple parallel computation
pipelines, commonly known as vector lanes, producing two
or more results simultaneously [13]. A prominent example
of such a vector architecture is the ARM Neon extension. It
can be used to accelerate both FCNNs and CNNs, resulting
in a speedup of more than 3.5x in execution time and an
energy improvement of almost 10x when using eight 16-bit
vector lanes [21]. ARMs CMISIS-NN ML library makes use of
Helium, a vector extension for the area constrained M-Cortex
series [19]. It provides optimized scalar implementations, as
well as vectorized kernels, and offers integration with TFLM
[20].

There are also a number of academic vector processors
available that support the RISC-V vector extension. An ex-
citing RISC-V vector core for low-power edge applications
is a processor designed by researchers from the University
of Southhampton [22]. The authors developed a synthesizable
vector processor consisting of four 8-bit vector lanes, resulting
in resource utilization of no more than 2.6x when compared
to a scalar CPU core. Substantial performance gains were

Input Data

P
artial

S
um

s

PE PE

PE PE

PE

PE

PE

PE PE

D
at

a 
M

em
or

y

Weight Memory

Accumulator

Activation

Processing
Element

Input Data

+×
Weight

Sum

in
Sum

out

Fig. 2: High level diagram of a weight-stationary systolic array
architecture (derived from [23]).

observed despite its small size, illustrating the advantages of
vector processing in low-power microcontrollers. When put
next to a scalar baseline implementation, measured runtime
improvements range from 2.7x to 5.8x.

Compared to specialized accelerators, a significant advan-
tage of vector architectures is their generality and programma-
bility. From a software perspective, they behave very similar
to traditional scalar CPUs and can thus be programmed
more effectively than specialized accelerators. While most ML
workloads consist of multiply-accumulate (MAC) operations,
modern NNs quickly evolve beyond traditional feed-forward
architectures. A prominent example are language models,
which make heavy use of the so-called transformer architecture
[11]. Such diverse workloads cannot easily be mapped onto
specialized accelerators. Hence, frequent data moved between
the accelerator and host CPU is required, which further strains
the already limited bandwidth and results in poor overall per-
formance. Using the flexibility of vector architectures, one can
more easily accelerate state-of-the-art models as they emerge
from ML research while still benefiting from the parallel and
efficient compute offered by the vector computation paradigm.

D. Specialized Accelerators

This section details specialized hardware architectures for
NN workloads. The presented designs follow the already
mentioned spatial computation pattern that aims to improve
throughput and reduce energy consumption by intrinsically
exploiting DLP in hardware and reducing internal data move-
ment. Through the reuse of local data, such as network weights
and feature maps, these designs are able to minimize the traffic
of input data and partial sum accumulations. Such dataflow
patterns can be found in many prominent accelerators, such as
the Google Edge TPU [24] and the Eyeriss accelerator [25].

Figure 2 depicts a block diagram of a typical NN accelerator
modeled closely to that of the Edge TPU [23]. It is based on
a weight-stationary systolic array architecture, encompassing
a grid of PEs that accelerates matrix multiplications. When



ADVANCED SEMINAR FOR VLSI TECHNOLOGY, WINTER TERM 2021/22 4

computing a batch of input data for a single FCNN layer,
weights are pre-loaded in a transposed manner from the top
into the 2D array of PEs. They are stored in local buffers inside
the PEs and remain stationary throughout the computation.
The PEs contain simple MAC units that feature multipliers
and adders. Next, data values stream in from the data memory
and propagate from left to right through the systolic array. The
partial sums of the output matrix are computed and proceed
downwards through the grid into the accumulators, where a
bias term is added. Following the completion of the matrix
multiplication, an activation function is applied to each result
of the output matrix in the accumulator [23]. While CNN
layers can generally use the same computation architecture by
loading weights and data values into the systolic array with
a slightly modified schedule, the authors from [25] present
a more sophisticated architecture directly tailored towards
inference of CNNs.

Modern edge NN workloads exhibit high diversity in terms
of data reuse. This heterogeneity necessitates the need for
flexible dataflow patterns in computation architectures. How-
ever, state-of-the-art accelerators such as the Edge TPU and
Eyeriss implement a single dataflow pattern designed for high
spatial reuse of a specific NN type. Thus, they are unable to
accommodate varying workloads. The authors from [26] claim
that the Edge TPU actually suffers from extreme underuti-
lization of its PEs, resulting in poor energy efficiency. Albeit
consuming large amounts of dynamic power, the Edge TPU’s
overprovisioned on-chip buffers fail at effectively caching
parameters for more than a single layer due to the inherent
diversity of NN workloads. This causes more than half of the
inference energy to be consumed by parameter communication
and off-chip data movement. Moreover, according to the au-
thors, the Edge TPU spends approximately three-quarters of its
total energy on DRAM accesses when computing diverse NN
workloads. While the buffers consume a significant amount of
area in the Edge TPU, they are ineffective at reducing off-chip
memory accesses, amortizing any gains achieved by its highly
optimized systolic array.

V. CONCLUSION

This paper provides a comparison of efficient low power
NN architectures for ML edge applications. While the pre-
sented CPU based systems offer energy-efficient inference,
they are unable to provide the required performance of ML
workloads. Specialized accelerators deliver superb efficiency
and performance but are unable to encompass the diversity
of contemporary NN models. These shortcomings are not
unique to the above presented Edge TPU but rather a systemic
problem of specialized hardware accelerators, particularly in
the embedded space where memories and buffers are small,
and workloads are diverse. This requires further research
throughout the whole stack, from software frameworks to
hardware design. It is inevitable and necessary to rethink
computation architectures for NN edge applications. The
outlined vector approach attempts to balance computational
efficiency with generality, promising excellent potential for
further improvements.

REFERENCES

[1] Vivienne Sze et al. “Efficient processing of deep neural net-
works: A tutorial and survey”. In: Proceedings of IEEE (2017).

[2] Petar Jokic et al. “A Construction Kit for Efficient Low Power
Neural Network Accelerator Designs”. In: arXiv preprint
arXiv:2106.12810 (2021).

[3] Vivienne Sze et al. “Efficient processing of deep neural net-
works”. In: Lectures on Computer Architecture (2020).

[4] Kyuho Jason Lee et al. “The Development of Silicon for
AI: Different Design Approaches”. In: IEEE Transactions on
Circuits and Systems (2020), pp. 4719–4732.

[5] Maurizio Capra et al. “Hardware and software optimizations
for accelerating deep neural networks: Survey of current
trends, challenges, and the road ahead”. In: IEEE (2020).

[6] Lei Deng et al. “Model compression and hardware acceleration
for neural networks: A comprehensive survey”. In: Proceed-
ings of the IEEE 108.4 (2020), pp. 485–532.

[7] Albert Reuther et al. “Survey and benchmarking of machine
learning accelerators”. In: 2019 IEEE HPEC. 2019, pp. 1–9.

[8] Albert Reuther et al. “Survey of machine learning accelera-
tors”. In: 2020 IEEE HPEC. 2020, pp. 1–12.

[9] Albert Reuther et al. “AI Accelerator Survey and Trends”. In:
arXiv preprint arXiv:2109.08957 (2021).

[10] Lukas Baischer, Matthias Wess, and Nima TaheriNejad.
“Learning on Hardware: A Tutorial on Neural Network Ac-
celerators and Co-Processors”. In: arXiv preprint (2021).

[11] Ashish Vaswani et al. “Attention is all you need”. In: NeurIPS.
2017, pp. 5998–6008.

[12] Jian Weng Liu and Tony Nowatzki. “Generality is the Key
Dimension in Accelerator Design”. In: Power (2021).

[13] Yunsup Lee et al. “Exploring the tradeoffs between pro-
grammability and efficiency in data-parallel accelerators”. In:
ISCA. 2011, pp. 129–140.

[14] S. Takano. Thinking Machines: Machine Learning and Its
Hardware Implementation. Elsevier Science, 2021.

[15] Maurizio Capra et al. “An updated survey of efficient hardware
architectures for accelerating deep CNNs”. In: (2020).

[16] P. Warden and D. Situnayake. TinyML: Machine Learning with
TensorFlow Lite on Arduino and Ultra-low-power Microcon-
trollers. O’Reilly, 2020.

[17] Pasquale Davide Schiavone et al. “Slow and steady wins the
race? A comparison of ultra-low-power RISC-V cores for
Internet-of-Things applications”. In: PATMOS. IEEE. 2017.

[18] ARM Limited. “ARM Cortex M0 Technical Reference Man-
ual”. In: Revision C (2009).

[19] Liangzhen Lai, Naveen Suda, and Vikas Chandra. “Cmsis-nn:
Efficient neural network kernels for arm cortex-m cpus”. In:
arXiv preprint arXiv:1801.06601 (2018).

[20] Martin Abadi et al. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. 2015.

[21] Sung-Jin Lee, Sang-Soo Park, and Ki-Seok Chung. “Efficient
SIMD implementation for accelerating convolutional neural
network”. In: ICCIP. 2018, pp. 174–179.

[22] Matthew Johns and Tom J Kazmierski. “A Minimal RISC-
V Vector Processor for Embedded Systems”. In: 2020 FDL.
IEEE. 2020.

[23] Jeff Zhang et al. “Thundervolt: enabling aggressive voltage
underscaling and timing error resilience for energy efficient
deep learning accelerators”. In: DAC. 2018.

[24] Amir Yazdanbakhsh et al. “An evaluation of edge tpu accel-
erators for convolutional neural networks”. In: arXiv preprint
arXiv:2102.10423 (2021).

[25] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. “Eyeriss: A spa-
tial architecture for energy-efficient dataflow for convolutional
neural networks”. In: ACM SIGARCH (2016), pp. 367–379.

[26] Amirali Boroumand et al. “Google Neural Network Models for
Edge Devices: Analyzing and Mitigating Machine Learning
Inference Bottlenecks”. In: PACT. IEEE. 2021, pp. 159–172.


	Introduction
	Related Work
	Background on Neural Networks
	Comparison
	Temporal vs. Spatial
	CPU
	Vector Architectures
	Specialized Accelerators

	Conclusion

