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Zusammenfassung

Durch die steigende Anzahl von Kleinstsatelliten in erdnahen Umlaufbahnen ist die Auslastung
des für die Satellitenkommunikation verfügbaren Frequenzspektrums signifikant gestiegen. So
kam es in jüngster Vergangenheit wiederholt zu Interferenzen und Störungen. Im Rahmen des
Forschungsvorhabens SALSAT des Fachgebiets Raumfahrttechnik der TU Berlin wurde ein Satellit
zur Messung und Analyse globaler Nutzungsdaten des Frequenzspektrums aus dem Orbit entwick-
elt. Eine besondere Herausforderung stellt dabei die Erfassung von Signalen und die Erkennung
belegter Frequenzbänder dar.

Im Rahmen dieser Arbeit werden neuartige Methoden zur dynamischen Detektion freier Funk-
frequenzen im Weltraum vorgestellt. Diese kombinieren breitbandige Spektralanalyse auf Grund-
lage von Fourier Transformationen mit modernen Rauschmessverfahren. Basierend auf der Eigen-
wertzerlegung der Kovarianzmatrizen empfangener Daten und informationstheoretischer Modelle
werden Signal- und Rauschkomponenten effektiv voneinander getrennt. Durch die analytische Her-
leitung aus mathematischen und signaltheoretischen Modellen können die Eigenschaften und das
Leistungsverhalten der präsentieren Spektralmessalgorithmen präzise beschrieben werden. Mithilfe
der eigens entwickelten Simulationsumgebung SpecSens werden Funktion und Stabilität der Algo-
rithmen verifiziert. Die Ergebnisse zeigen, dass die hier vorgestellten Methoden auch in rauschbe-
hafteten Umgebungen mit geringen Signal-Rausch-Verhältnissen hochwertige Detektionsergebnisse
liefern.
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1. Introduction

1.1. Motivation

Radio-frequency spectrum is one of the most important resources required for wireless communica-
tion. Nearly all satellites require at least one, often multiple, radio frequency bands for inter-satellite
and ground transmissions [1]. With an ever-increasing amount of satellite launches, especially in
recent times, the potential for harmful radio interference between satellites has risen substantially
[2, 3]. This situation is further exacerbated by so-called mega-constellations [4], consisting of hun-
dreds or even thousands of satellites. Prominent examples are SpaceX’s Starlink [5] and Amazon’s
Project Kuiper [6].

As radio spectrum occupation grows, static spectrum allocation becomes increasingly difficult [7].
Traditional spectrum coordination, as has been done by the International Telecommunications
Union (ITU) [8], will not suffice for the satisfaction of increasing spectrum demand. With the
radio spectrum already heavily utilized and more users to come, new and more advanced spectrum
allocation techniques are necessary.

To address the challenge of increasing spectrum occupancy, the nanosatellite mission SALSAT (Spec-
trum AnaLysis SATellite) of Technische Universität Berlin (TU Berlin) and the German Aerospace
Center (DLR) was conceived [9]. It aims to investigate and map the radio frequency spectrum usage
in orbit and around the world. Of particular interest are the VHF and UHF amateur bands, along
with the S-band scientific bands (see table 1.1). As such, SALSAT provides the basis for further
research and development as well as for future missions with more advanced spectrum exploration
systems.

1.2. Contributions and Organization

In this thesis, several methods for so-called spectrum sensing are presented and investigated with
respect to application on SALSAT. By analyzing and comparing their properties, appropriate sens-
ing algorithm candidates are selected, implemented, and further scrutinized through simulations.
All simulations are conducted using SpecSens, a modular spectrum sensing simulation framework
developed in the course of this thesis. SpecSens enables seamless development and modeling of
spectrum sensing methods by providing synthetic data streams and useful functions, thus aiding
in comparing and verifying spectrum sensing performance. With the help of SpecSens, a novel
spectrum sensing method combining wideband energy detection and eigenvalue-based noise estima-
tion is developed. Novel performance metrics for the proposed algorithm are analytically derived
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Band Frequencies

VHF 145.80− 174.00MHz

UHF 400.15− 420.00MHz

UHF 435.00− 438.00MHz

S-band 2075.00− 2095.00MHz

S-band 2255.00− 2275.00MHz

Table 1.1.: Frequency bands of interest to SALSAT [9].

and evaluated through simulations. The conducted simulations suggest that the proposed algo-
rithm can effectively detect signals in wideband data and thus improve cognitive radio transmission
throughput.

Chapter 2 starts by introducing the necessary mathematical and theoretical background. Because of
the subject’s vastness, it only focuses on theoretical concepts directly applicable to SALSAT, while
more generic mathematical topics are discussed in appendix A. Chapter 3 builds on existing work and
presents the most relevant state-of-the-art spectrum sensing methods. Particular emphasis is placed
on noise estimation methods in the context of wideband spectrum sensing. Less promising spectrum
sensing methods are detailed in appendix B. Chapter 4 presents the modular simulation framework
SpecSens and discusses its internals. This is followed by the implementation and simulation of the
developed spectrum sensing algorithms and their performance metrics in chapter 5. A conclusion
and outlook on future work with special emphasis on hardware acceleration and embedded real-time
applications are presented in chapter 6.

1.3. Background

1.3.1. SALSAT

SALSAT is a nanosatellite based on the TUBiX10 bus developed by TU Berlin (see fig. 1.1) [11–
13]. Its primary payloads consist of the SALSA spectrum analyzer and the Image Processing Unit
(IPU). The IPU is primarily used for visual positioning and attitude control. However, it can
also be used as a general computing platform. It features an NXP i.MX 7 32-bit ARM Cortex-
A7 processor, supporting NEON SIMD vector instructions and running at up to 1GHz [14]. The
system software is built on top of a Linux-based Yocto operating system. The SALSA spectrum
analyzer (see fig. 1.2) is based on the open source LimeSDR project [15]. It utilizes software-defined
radio (SDR) technology, modified and adapted for use in space. The SDR front-end consists of a
field-programmable and fully re-configurable Lime Microsystems LMS7002M RF transceiver [15].
It down-converts incoming RF signals to baseband and generates I/Q data samples, which are
transferred via a 12-bit parallel interface to an Intel Cyclone IV field-programmable gate array
(FPGA) [16]. The FPGA is connected to 1 Gbit of redundant DDR2 memory and an STM32F4
microcontroller via the Serial Peripheral Interface (SPI). The STM32F4 microcontroller can be used
for data processing and distribution to other parts of the satellite’s systems. The IPU and SALSA
subsystems exchange data via the satellite’s system bus. With the help of custom ground control
software and high bandwidth communication links, SALSAT’s software can be fully reconfigured in
flight [13]. This makes SALSAT a versatile platform for spectrum occupancy research in space.
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Figure 1.1.: Artists impression of SALSAT and subsystems [10].

LMS7002M
RF transceiver

Cyclone IV
FPGA

STM32F4
microcontroller

1 Gbit
DDR2

I/Q SPI

Satellite

bus

Figure 1.2.: Simplified SALSA spectrum analyzer block diagram (based on [10]).

SALSAT was successfully launched into a 575 km sun-synchronous orbit onboard a Soyuz rocket from
the Plesetsk spaceport in north-west Russia on September 28, 2020 at 11:20 UTC [12]. First radio
communication contact with the TU Berlin Mission Control Center was at 23:10 UTC. However,
no usable spectrum I/Q data is yet available, as SALSAT was still in commissioning phase during
the work on this thesis.

1.3.2. Cognitive Radio

Cognitive radio (CR) is a generic term that was first proposed by J. Mitola in 1999 [17]. It is used to
describe a radio system that is aware of its environment and capable of adapting its transmissions
according to the spectrum usage in its vicinity [18]. It aims to increase spectrum utilization while
minimizing congestion and interference with other spectrum users. CRs utilize multiple sources
of knowledge, including, but not limited to: radio spectrum usage, geolocation, protocols, and
spatial or temporal patterns [19]. With the help of advanced algorithms, often employing machine-
learning-based reasoning, this knowledge is further processed and transformed into actions [20].
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Figure 1.3.: High level cognitive radio flow.

Such cognitive behavior can be extended to networks of radios [20–25]. By exchanging information
and coordinating spectrum access, CR networks are able to further improve dynamic spectrum access
(DSA).

The subject of this thesis is limited to the information-gathering part of the CR flow. More specif-
ically, it will only investigate the radio environment as an information source (see fig. 1.3). Radio
spectrum sensing is deemed the most promising and robust source of spectrum usage information
[26–28], as it directly measures the medium of interest. Moreover, many other information sources,
such as geolocation, are generally not available in satellite communication applications [7].

1.3.3. Spectrum Sensing

The term spectrum sensing describes the task of gathering cognition about the radio environment
[25, 29–34]. This is primarily done through antennas and sensors, which receive radio waves and
convert them into digital signals to be used for further processing and analysis. Possible insights
about signals in the radio environment, acquired through spectrum sensing, include signal power,
duration, frequency, and modulation type.

In the context of this thesis, spectrum sensing is further narrowed to the task of reliably finding spec-
trum opportunities, also known as spectrum holes or white spaces (see fig. 1.4) [19, 22]. Spectrum
opportunities are defined as areas in the spectrum that are currently not occupied and available for
use. They are bound by frequency, time, and location, meaning that they only exist in a specific
frequency range, for a certain time span, and at a particular location in space.

The performance of spectrum sensing algorithms may be severely degraded by shadowing, fading,
and low signal-to-noise ratios (SNRs). To alleviate some of these factors, cooperative spectrum
sensing has been proposed [22, 35]. It can enhance spectrum sensing performance through spatial
diversity. In cooperative spectrum sensing, multiple cognitive users obtain and share information
about the spectrum environment in a decentralized and cooperative way. The concept of coopera-
tive spectrum sensing is closely related to CR networks (see subsection 1.3.2). While cooperative
spectrum sensing is desirable, it is not applicable here, as SALSAT is currently a standalone system.
This places considerable demands on the spectrum sensing algorithms deployed on SALSAT (see
section 1.4).
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Figure 1.4.: Illustrative spectrum occupancy over time. 0% occupancy indicates a spec-
trum hole.

1.3.4. Related Work

With cognitive radio being a promising technology for future spectrum use, the amount of research
that has been conducted is extensive. While the available literature provides a rigorous treatment of
theoretical concepts, it often fails to provide insights with practical relevance. A considerable part
of existing literature does not build on real-world scenarios, thereby neglecting important aspects
of practical spectrum sensing applications [36–38].

A prevalent, space-related example is the CoRaSat project funded in part by the European Com-
mission [39]. It span over a time of three years (2012-2015), involved five European universities,
and had a budget of more than four million Euros. However, besides a dozen publicly available and
theoretically oriented publications [40–42], very little practically relevant research, such as spectrum
sensing algorithms or software solutions, has come out of this project. Needless to say, important
work on business-, regulatory-, and standardization-related topics has been conducted. While this
aids in providing a framework for CR in society, it does not directly advance CR and spectrum
sensing as a viable technology for real-world applications.

To a lesser extent, this phenomenon is also reflected in the field of spectrum sensing. Originating
from the mid-20th century work on detection theory for radar signals [43, 44], spectrum sensing,
with respect to DSA and CR, has established itself as an independent discipline in the late 1990s and
early 2000s. This lead to an increased interest by the research community and consequently to the
development of more specialized spectrum sensing methods. In 2004, the IEEE 802.22 working group
on Wireless Regional Area Networks (WRAN) was established [45–48]. It utilized rapid advances
in the fields of CR and spectrum sensing and published the first cognitive radio-based standard for
DSA in 2011. Other standards, such as the IEEE 802.11af Wireless Local Area Network (WLAN)
standard, published in 2014, followed [49–51]. However, most CR standards primarily rely on
geolocation information (IEEE 802.22 allows for some spectrum sensing approaches). Additionally,
these standards only lay out guidelines and requirements for spectrum sensing but do not provide
any actual algorithms. Thus, they have only seen minuscule adaption in real-world applications. As

5



already hinted at, this is also likely caused by a lack of application-oriented research in spectrum
sensing. While there exists some publicly available software written in Python [52] and C++ [53], it
is very rudimentary, poorly documented, and focuses on other aspects of the CR flow (see fig. 1.3).
Without robust and well-tested spectrum sensing algorithms or frameworks available for academia
and industry, the practical adoption of spectrum sensing and CR is not foreseeable.

1.3.5. Space-related Challenges

The ITU [8], as the main regulatory body for the shared global use of radio spectrum, facilitates
international cooperation by assigning satellite orbits and radio frequencies. While the ITU pur-
sues the timely and efficient coordination of the radio spectrum from a regulatory perspective, the
general practice, as conducted by the spectrum users (embodied through governments and corpora-
tions), often deviates from the notified use to the ITU [7]. Combined with a myriad of international
interests represented in space-related spectrum usage, increasing disorganization of actual spectrum
utilization will likely cause severe interference in the near future. This situation is further exac-
erbated by the ever-increasing demand for radio spectrum, especially in recent times. So-called
mega-constellations [4], consisting of hundreds or even thousands of satellites, such as SpaceX’s
Starlink [5] and Amazon’s Project Kuiper [6], require vast amounts of radio-frequency spectrum [7].
The influence of terrestrial interference on satellite communications further complicates this situa-
tion. Most satellites cross dozens of countries (each with different frequency spectrum regulations)
multiple times per day, often receiving radio signals from numerous regions simultaneously. Such
diversified radio usage makes the development of space-borne spectrum sensing systems an intricate
process.

1.4. Formal Requirements

With the basic background information presented and the general task laid out, more concrete
specifications for the spectrum sensing system on SALSAT must be devised. So-called formal
requirements aid in aligning and substantiating goals. They guide the development process and
help to verify development results. The following section motivates such formal requirements with
respect to spectrum sensing on SALSAT.

The requirements will be mainly grouped into mission requirements (MR), which are similar to
functional requirements, and constraints (CT), which define non-functional aspects. Additionally,
as the system will be tightly integrated into an existing architecture, specialized interface require-
ments (IR) will be defined. While this grouping can be ambiguous at times, it helps to clarify the
development process.

As already mentioned, spectrum usage in space is very complex and highly diversified. Different
technologies, from different entities and technology generations, are operating and utilizing spectrum
resources in space. Therefore, there is no single radio frequency or telecommunication standard in
use. Spectrum sensing systems cannot rely on any specific property of radio signals and must be
able to sense and detect using characteristics shared by all radio signals; they must be blind to signal
specific features and be able to sense all types of signals (MR-01). Similarly, no assumptions about
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background noise can be made in advance, as the noise environment in space is very dynamic [7].
Thus, spectrum sensing systems must cope with unknown and varying background noise levels
(CT-02).

SALSAT aims to investigate spectrum bands with a width of more than 20MHz (see table 1.1).
Consequently, wideband spectrum sensing methods are required, monitoring spectrum occupancy
over wide frequency ranges and providing detailed information on individual subbands (MR-02).
Because the measurement of high bandwidth signals requires high data rates, the system must handle
excessive data throughput; while simultaneously providing spectrum sensing results hundreds of
times per second (CT-04). Frequency ranges, resolution, probability of detection, probability of false
alarm, and other relevant parameters have to be dynamically configurable (MR-03). This allows for
on-demand and dynamic operation, as required by research-oriented cognitive radio applications.

To reduce the chance of possible interference, the spectrum sensing system must be able to detect
radio signals with very low latency, minimizing the time of simultaneous transmissions (CT-05).
Because of channel shadowing and multipath fading, it is generally difficult to distinguish between
noise and signals. Fading and shadowing may result in the hidden terminal problem, where the
spectrum sensing system cannot detect a signal source and therefore cause harmful interference by
transmitting in the primary frequency band [28]. Very sensitive receivers can alleviate this problem.
It is thus of paramount importance that the spectrum sensing system can operate at low SNR (CT-
01). Because spectrum interference needs to be avoided at all times, the spectrum sensing system
must be robust and reliable (CT-03)

Since SALSAT is a standalone system, it will operate without networking or cooperation with other
systems. Consequently, the spectrum sensing algorithms must work independently and cannot rely
on information from external platforms (CT-07). Additionally, only a single antenna, analog front-
end channel, and data stream may be used by the spectrum sensing algorithms. SALSAT actually
provides multiple antennas and analog channels, but due to other measurement equipment running
in parallel and because of maximum power consumption constraints, only one of them is available
for use (IR-02). As illustrated in fig. 1.2, the analog front-end provides a continuous stream of I/Q
data. This constitutes the signal input to the spectrum sensing system (IR-01). Due to resource
constraints (power consumption, space, weight, etc.), only small embedded computing systems are
available on SALSAT. Thus, the spectrum sensing algorithms must operate with limited processing
and memory resources (CT-06).

In order to demonstrate conformance, the requirements and constraints must be verified through
one or more of the following verification methods [54]:

1. Analysis (A) - Performing theoretical or empirical evaluation.

2. Simulation (S) - Validation of performance and function under various simulated environ-
ments using simulated data samples.

3. Target simulation (T) - Measuring performance and function of target implementation using
real data samples recorded in space.
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Req.-Number Content of requirement Verif.

MR-01 The system shall be able to sense all types of signals without prior
knowledge of signal properties.

A,S

MR-02 The system shall be able to sense over a wide frequency range simul-
taneously with configurable frequency resolution.

A,S

MR-03 Desired performance metrics, such as the probability of false alarm
and probability of detection, shall be configurable.

A

CT-01 The system shall be able to sense signals with low SNR. S
CT-02 The system shall be able to sense in environments with unknown and

varying background noise.
A,S

CT-03 The system shall be robust, stable, and reliable, meaning that it must
stay operational in all sensing scenarios.

S,T

CT-04 The system shall operate at high data rates and with high throughput.
Spectrum occupancy information shall be available hundreds of times
per second.

A,S,T

CT-05 The system shall operate with very little latency so that minimal time
passes between actual spectrum occupancy change and detection.

A,S,T

CT-06 The system shall operate in a constrained resource environment; with
respect to computing power, memory footprint, and power consump-
tion.

A,S,T

CT-07 The system shall sense as a standalone entity and without the need
for networked or cooperative operation.

A,S

IR-01 The system shall use a continuous I/Q data stream as the (only)
information input.

A

IR-02 The system shall be able to sense with a single antenna, RF chain,
and data stream.

A

Table 1.2.: Formal requirements for the spectrum sensing system on SALSAT.
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2. Theoretical Background

This chapter is going to introduce the necessary theoretical background required for the design of
spectrum sensing systems. Starting with a short overview of mathematical concepts, the employed
channel model and the most important theoretical aspects of signal detection will be presented.

2.1. Mathematical Prerequisites

Spectrum sensing, detection theory, and statistical signal processing rely heavily on mathematical
tools and models. This thesis and the presented algorithms make use of the following statistical
distributions: multivariate and complex Gaussian (section 3.1.1), chi-square (section 3.1.1), Tracy-
Widom (section 3.1.2), and Marchenko-Pastur (section 3.3). Spectral analysis, in terms of eigenvalue
decomposition of matrices (section 3.1.2 and section 3.3), as well as spectral density estimation of
complex time signals using the Fourier series (appendix B.1.3), Fourier transform, discrete Fourier
transform, fast Fourier transform, and short-time Fourier transform will be employed (section 3.2).
Additionally, the wavelet transform is used for singularity detection in section 3.2.4. Because of the
breadth of the discussed methods and to best accommodate a variety of readers, only a very brief
overview of the most important concepts will be given in this section and throughout this thesis.
For formal definitions and a general presentation of the mentioned concepts, consult appendix A.

2.2. Signal Model

Communicating information from one location to another requires some form of pathway or medium,
also known as channel. In the design of communication systems, it is convenient to construct
mathematical models that reflect the fundamental characteristics of the transmission medium. A
simple but powerful model is the linear time-variant filter channel, which, as the name suggests,
changes its characteristics over time t ∈ R [55, 56]. Its channel response h(τ, t) models small-scale
effects, like multipath fading, as well as larger-scale effects, such as path loss via distance attenuation
and shadowing by obstacles [57]. This model is augmented with additive noise w(t). Noise can come
from various natural sources, such as the thermal vibrations of atoms or celestial sources, e.g., the
Sun [56, 58]. Electronic components and amplifiers can also introduce noise at the receiver. The
central limit theorem (CLT) suggests that this type of noise can be characterized statistically as
a Gaussian noise process [59]. Furthermore, because its power is uniformly distributed across the
frequency band, just as white light is uniformly distributed across the visible spectrum, this type of
noise is called white Gaussian noise (WGN) [60]. Hence, when a signal s(t) is transmitted through a
channel h(τ, t) (see fig. 2.1), the channel output x(t), which is the received signal or more generally

9



h(τ, t)
s(t)

w(t)

x(t)

LPF

ADC xr,n
I

LPF

ADC xi,n
Q

LO

cos(2πfcarrt)−π
2

RF receiver

Channel model

Figure 2.1.: Simplified SALSAT channel model and RF receiver block diagram (based on
[55] and [15]).

the received data, can be derived as

x(t) =

∫ ∞

−∞
h(τ, t)s(t− τ)dτ + w(t)

= h(τ, t) ∗ s(t) + w(t), (2.1)

where ∗ denotes the convolution of two functions [55]. This concept can be generalized to multiple-
input multiple-output (MIMO) systems, yielding a K × P channel response matrix H = (hi,j(τ, t))
and a K × 1 additive noise vector w, with P denoting the number of signal sources and K the
number of receivers respectively, so that x(t) = Hs(t) +w(t) [61–63].

While this channel model is often chosen for terrestrial links, it can be simplified for many satellite
and space communication applications to only include additive WGN; because multipathing, terrain
blocking, ground clutter, etc., are less common in space [7]. The channel response is replaced with
a Dirac-impulse h(τ, t) = δ(τ, t), which can be left out [64]. As there is only a single antenna and
data stream available on SALSAT (IR-02), the signal model relevant to this thesis is

x(t) = s(t) + w(t). (2.2)

After the RF signal x(t) is received, the first major step at the receiver (of interest to the work in
this thesis) is frequency shifting, where the signal is converted to the equivalent baseband in-phase I
and quadrature Q components. This is accomplished through multiplication with a local oscillator
(LO), which produces cosine and sine waves of frequency 2πfcarr (see fig. 2.1). fcarr is the so-called
carrier frequency with which the signal was originally modulated (see table 1.1) [55]. After I/Q
demodulation, the signal (now at baseband) is lowpass filtered (LPF), leaving only frequencies in
the range of [−B/2, B/2], where B represents the signal bandwidth (see fig. 2.2). Finally, the signal
is sampled at (or above) the Nyquist rate fs > 2B and digitized by an analog to digital converter
(ADC), which converts analog signals into digital signals. The digital I and Q signals can be thought
of as the real and imaginary parts of a complex number x ∈ C, where I = Re(x) and Q = Im(x),
respectively1 (IR-01) [56]. The resulting discrete baseband signal xn with discrete-time n ∈ N, a

1A complex number z ∈ C is written as z = zr + izi where i =
√
−1. zr = Re(z) and zi = Im(z) refer to the real

and imaginary parts respectively. The complex conjugate is written as z∗ = zr − izi.
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Figure 2.2.: Illustration of the relationship between a passband spectrum S(f) and its
baseband equivalent Sb(f). The passband spectrum (blue) is down-converted
to baseband (green) and subsequently centered around near-zero frequencies
(derived from [55]).

complex-valued representation of the real-valued modulated physical signal x(t), can be represented
by its discrete signal model

xn = sn + wn, (2.3)

where sn and wn are the discrete-time complex signal and noise counterparts of s(t) and w(t),
respectively.

2.3. Detection Theory

Signal detection, in the context of this work, involves deciding whether a signal is present or not
in a set of noisy observations [44, 60, 65]. In contrast to signal (or parameter) estimation, where
high-quality estimates are desired, signal detecting concerns itself with the more specific task of
detecting weak signals buried in noise. A signal detector has to distinguish between two possible
hypotheses: H0 (noise only) and H1 (signal and noise). The detector has to make this decision
based on the data samples it receives.

Let the received input to the detector be some N -dimensional complex data vector x =
[x1, . . . , xN ]

T ∈ C
N . With the results from section 2.2, the detection problem becomes

H0 : x = w (2.4)

H1 : x = s+w, (2.5)

where s = [s1, . . . , sN ]
T ∈ C

N is the signal the detector is trying to detect, w = [w1, . . . , wN ]
T ∈ C

N

is the additive complex white Gaussian noise (CWGN) [60] and N is the length of the sample
vectors. If not stated otherwise, the additive CWGN will be assumed to be zero-mean and circularly
symmetric (see appendix A.1.1), as well as independent and identically distributed (IID) with
variance Var[w] = σ2w. IID means that any two data points xn, xm ∈ x do not statistically depend on
each other and that they all come from the same underlying statistical distribution. It is common to
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write w ∼ CN
(
0, σ2wI

)
, where 0 and I are the zero vector and identity matrix of size N , respectively.

The statistical model for s will be defined as needed, as different models aid in examining the diverse
properties of the spectrum sensing algorithms investigated (see chapter 3 and appendix B).

There are mainly two strategies available for constructing signal detection algorithms. The first is
the so-called Bayes risk criterion [26, 60, 66]. It consists of assigning a cost to each outcome of the
decision process and subsequently minimizing the total expected cost, termed risk. However, this
requires knowledge of the prior probabilities of the hypotheses H0 and H1. Since this information
is not available (MR-01), the so-called Neyman-Pearson criterion will be used hereafter [26, 60]. It
works by maximizing the probability of detection PD under the constraint that the probability of
false-alarm is upper bounded by PFA. The proof in appendix A.2 shows that the Neyman-Pearson
detector using the likelihood-ratio Λ(·) is optimal under the here given conditions. The resulting
test-statistic (or test-criterion) is called the likelihood-ratio test (LRT). The detector decides H0 if
Λ(x) < λ and H1 if Λ(x) > λ. That is

Λ(x) =
p(x | H1)

p(x | H0)

H1

≷
H0

λ, (2.6)

where p(a | b) denotes the conditional probability2 of a given b, and x is the observed data vector3.
The decision threshold can be found by rearranging the equation from the Neyman-Pearson theorem
(see appendix A.2)

PFA =

∫

{x:Λ(x)>λ}
p(x | H0)dx =

∫ ∞

λ
p(Λ(x) | H0)dΛ (2.7)

so that λ is isolated. This will become more apparent when applied to actual detection methods in
chapter 3.

2One could similarly call p(a | b) the likelihood of b given a. This is why Λ(x) is called the likelihood-ratio.
3The problem presented here is a classical decision theory problem. The signal vector x can be thought of as a

point in an N -dimensional signal vector space of all possible signals. Every sample xn of x is a feature used in the
decision process. One thus needs to find a decision rule that divides the signal vector space into two subspaces, also
called decision regions, separated by an N − 1-dimensional decision boundary. The detection algorithm simplifies
this process, as it maps a vector from the N -dimensional signal space down to 1 dimension so that the decision
boundary becomes a simple threshold λ.

12



Actual condition true (H1) Actual condition false (H0)

Predict true

Predict false

Probability of detection (PD)

Probability of miss (PM )

Probability of false alarm (PFA)

Probability of true negative

Figure 2.4.: Confusion matrix for signal detection.
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Figure 2.5.: Receiver operator characteristic (ROC) at different SNR values for an ideal
energy detector with N = 10.

A detector does not always make correct decisions. To quantify the performance of the detector, it is
necessary to formally introduce the above-mentioned probability of false alarm PFA and probability
of detection PD. Together with the probability of miss PM they are defined as [44, 60]

PFA = p(Λ(x) > λ | H0) =

∫ ∞

λ
p(Λ(x) | H0)dΛ (2.8)

PD = p(Λ(x) > λ | H1) =

∫ ∞

λ
p(Λ(x) | H1)dΛ (2.9)

PM = p(Λ(x) < λ | H1) =

∫ λ

−∞
p(Λ(x) | H1)dΛ = 1− PD. (2.10)

A false alarm occurs when the detector predicts that a signal is present, even though there is no
signal present. This is an unwanted error. The PFA is usually chosen to be between 0.01 and 0.1
[45]. A (correct) detection occurs, as the name suggests, when the detector correctly detects that
a signal is present. One aims to maximize the PD, commonly required to be above 0.9 or 0.95 [45].
Their relation to one another can be seen in fig. 2.3, as well as in the so-called confusion matrix in
fig. 2.4. These values can be traded off against each other by adjusting the threshold λ.

By keeping the sample size N constant, one can derive a function in the form of PD(PFA), which is
commonly termed the receiver operator characteristic (ROC). It directly relates the probability of
detection PD to the probability of false alarm PFA and is thus a powerful tool for visual performance
comparison between detectors and models (see fig. 2.5). The diagonal in fig. 2.5, which represents a
completely random detector, divides the ROC space. Curves in the upper left, above the diagonal,
represent increasingly better classification results (better than random), while curves below the
diagonal represent bad results (worse than random) [67].
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The signal-to-noise ratio (SNR) [55] is defined as the ratio of the power of the signal s to the power
of the noise w

SNR =
Psignal

Pnoise
=

E[|s|2]
E[|w|2]

E[w]=0
=

E[|s|2]
σ2w

, (2.11)

where E[·] denotes the expected value of a random variable. The last equality holds because the
variance is defined as Var[Z] = E[|Z|2]− |E[Z]|2 for a complex random variable Z [59]. In general,
the higher the SNR, the easier it is to detect a signal. Because SNR values are usually expected to
be very low (CT-01), detector design for space applications is challenging. Often it is more practical
to express the power in a logarithmic form called decibel (dB) [64], which, for the power of signals,
is defined as

Psignal,dB = 10 log10
(
Psignal

)
(2.12)

Pnoise,dB = 10 log10 (Pnoise) (2.13)

SNRdB = 10 log10

(
Psignal

Pnoise

)
= 10 log10 (SNR) . (2.14)
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3. Sensing Methods

This chapter introduces the most relevant state-of-the-art spectrum sensing methods by outlining
their advantages and discussing their limitations. It will first focus on narrowband sensing, subse-
quently present wideband spectrum sensing methods, and conclude by introducing noise estimation
techniques. Building on concepts presented in chapter 2, detection methods will be derived from a
signal theoretic perspective. This is going to provide valuable insights into the strengths and weak-
nesses of detectors while allowing to analytically derive crucial performance metrics, which will later
be verified through simulations in chapter 5. Only spectrum sensing methods applicable to SALSAT
will be detailed. Less promising methods can be found in appendix B. A general overview of all
methods will be provided at the end of each section.

While this chapter heavily relies on existing work in spectrum sensing, some of the here presented
derivations and performance metrics are new and have not yet been described in related literature.
These novel formulations allow for an analytical and quantitative approach to wideband spectrum
sensing based on noise estimation, making it possible to model and predict spectrum sensing results
in complex environments.

3.1. Narrowband Spectrum Sensing

Unlike wideband spectrum sensing, narrowband spectrum sensing is applied to a single spectral
band. Subbands are not individually analyzed, and the detector does not differentiate between
spectral components; the detection problem is thus entirely analogous to the one presented in
section 2.3.

3.1.1. Energy Detection

The (narrowband) energy detector (ED), first conceived in [68], is one of the most popular detection
schemes for spectrum sensing and related applications [69, 70]. It is used when the signal to
be detected is completely unknown, and no assumptions about modulation type, communication
protocol, or other signal properties can be made (MR-01). The ED is very susceptible to noise,
hence the treatment of noise estimation methods in section 3.3. Because of its simplicity, attaining
its performance metrics is relatively straightforward. However, since many different variants exist,
one needs to be careful when using statistics available in literature. Thus, this section will first
derive the ED equation in accordance with [60] using the LRT (see section 2.3), followed by the
derivation of the performance statistics, using both exact (chi-square) and approximate methods
(CLT).
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Detector

Similar to the noise w, which will be modeled as CWGN (see section 2.2), the signal s will also be
characterized using a purely statistical model. It will be assumed that the signal is drawn from a
complex Gaussian distribution with zero mean and covariance C = σ2sI. This assumption is, akin to
Gaussian noise, motivated by the CLT. Hence, under H0 the received data samples will be modeled
as x ∼ CN (0, σ2wI) and under H1 the received samples are x ∼ CN (0, (σ2w + σ2s)I), so that the
PDF’s under both hypotheses are

p(x | H0) =
1

πNσ2Nw
exp

(
− 1

σ2w
xHx

)
(3.1)

p(x | H1) =
1

πN
(
σ2w + σ2s

)N exp

(
− 1

σ2w + σ2s
xHx

)
, (3.2)

using the in appendix A defined complex multivariate Gaussian distribution. Constructing the
LRT

Λ(x) =
p(x | H1)

p(x | H0)

H1

≷
H0

λ

=

1

πN(σ2
w+σ2

s)
N exp

(
− 1
σ2
w+σ2

s
xHx

)

1
πNσ2N

w
exp

(
− 1
σ2
w
xHx

) , (3.3)

applying the natural logarithm ln(·), and simplifying, results in

ln
(
Λ (x)

)
= ln




1

πN(σ2
w+σ2

s)
N exp

(
− 1
σ2
w+σ2

s
xHx

)

1
πNσ2N

w
exp

(
− 1
σ2
w
xHx

)




= N ln

(
σ2w

σ2w + σ2s

)
−
(

1

σ2w + σ2s
− 1

σ2w

)
xHx

= N ln

(
σ2w

σ2w + σ2s

)
+

σ2s
σ2w(σ

2
w + σ2s)

xHx
H1

≷
H0

λ′. (3.4)

After rearranging the terms, one has

T(x) = xHx
H1

≷
H0


λ′ −N ln

(
σ2w

σ2w + σ2s

)
 σ2w(σ

2
w + σ2s)

σ2s

= xHx
H1

≷
H0

λ′′, (3.5)

which yields the final ED test-statistic

T(x) =

N∑

n=1

x∗nxn =

N∑

n=1

|xn|2
H1

≷
H0

λ′′, (3.6)

where the threshold λ′′ will from here on just be referred to as λ. Because the data samples x are
zero-mean, the detector estimates a scaled version of the variance Var[x] = σ2x, which can also be
interpreted as the power of x. Thus, the ED computes the energy of x. Under H0 the variance is
σ2w, while under H1 it increases to σ2w+σ2s . Intuitively, if s is present, the energy of x increases, and
when s is not present, it decreases. Therefore, unknown noise power levels σ2w drastically influence
the detector’s performance.

16



Square |·|2 Integrate
∑

Threshold ≷ λ
x H0

H1

Figure 3.1.: ED block diagram (derived from [70]).

Chi-Square Statistics

Since the test-statistic T(x) (see eq. (3.6)) of the ED computes the sum of the squares of N IID
complex Gaussian random variables, it follows a scaled chi-square distribution (see appendix A.1.2)
with 2N degrees of freedom [60, 71]

H0 :
2 T(x)

σ2w
∼ χ2

2N (3.7)

H1 :
2 T(x)

σ2w + σ2s
∼ χ2

2N . (3.8)

With its definition from section 2.3, one can derive the probability of false alarm PFA for the ED
as

PFA = p
(
T(x) > λ | H0

)

=

∫ ∞

λ
χ2
2N

(
2T(x)

σ2w

)
dT

= 1− Fχ2
2N

(
2λ

σ2w

)
, (3.9)

where Fχ2
2N

is the CDF of χ2
2N . Similarly, the probability of detection PD is

PD = p
(
T(x) > λ | H1

)

=

∫ ∞

λ
χ2
2N

(
2T(x)

σ2w + σ2s

)
dT

= 1− Fχ2
2N

(
2λ

σ2w + σ2s

)
. (3.10)

Given eq. (3.9), one can derive the threshold λ as a function of the PFA simply as

λ =
σ2w
2
F−1
χ2
2N

(1− PFA) . (3.11)

To construct the ROC curve (see section 2.3) for the ED, one has to derive the following; starting
with eq. (3.9)

PFA = 1− Fχ2
2N

(
2λ

σ2w

)

1− PFA = Fχ2
2N

(
2λ

σ2w

)

F−1
χ2
2N

(1− PFA)σ2w = 2λ, (3.12)
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which will then be plugged into eq. (3.10) to attain

PD = 1− Fχ2
2N



F−1
χ2
2N

(1− PFA)σ
2
w

σ2w + σ2s




= 1− Fχ2
2N



F−1
χ2
2N

(1− PFA)

1 + σ2
s

σ2
w




= 1− Fχ2
2N



F−1
χ2
2N

(1− PFA)

1 + SNR


 (3.13)

yielding a function of form PD(PFA), the ROC [69].

CLT Statistics

Although the test statistic T(x) has a chi-square distribution, the CLT suggests that the sum of
IID random variables with finite mean and variance approaches a Gaussian distribution for large N
[44, 60]. Modeling the test statistic as a Gaussian distribution makes the calculation of parameters
more efficient (CT-06) while also allowing to analytically derive the number of samples N needed
to achieve a certain PFA and PD, which is not possible using the chi-square distribution directly
[69].

Because the test-statistic T(x) (see eq. (3.6)) of the ED has the following structure

T(x) =
N∑

n=1

|xn|2 =
N∑

n=1

x2r,n + x2i,n =
N∑

n=1

zn (3.14)

and zn is an IID random variable with finite mean µ = E[zn] <∞ and finite variance σ2 = Var[zn] <
∞, the CLT states that test statistic can be approximated by

T(x) =
N∑

n=1

zn ≈ T̂(x) = N




N∑

n=1

µn,
N∑

n=1

σ2n


 = N

(
N E[z], N Var[z]

)
. (3.15)

One consequently needs to find E[z] and Var[z]. Starting with the mean

E[z] = E[x2r + x2i ]

= E[x2r ] + E[x2i ]

= Var[xr]− E[xr]
2 +Var[xi]− E[xi]

2

=
1

2
σ2 − 0 +

1

2
σ2 − 0

= σ2, (3.16)
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where Var[x] = E[x2] + E[x]2 for any real random variable [59] and using the definition of the
complex Gaussian from appendix A. Continuing with the variance

Var[z] = Var[x2r + x2i ]

= Var[x2r ] + Var[x2i ] + Cov[x2r + x2i ]

= Var[x2r ] + Var[x2i ] + 0

= E[(x2r)
2]− E[x2r ]

2 + E[(x2i )
2]− E[x2i ]

2

= E[x4r ]−
(
1

2
σ2
)2

+ E[x4i ]−
(
1

2
σ2
)2

= 3Var[xr]
2 − 1

4
σ4 + 3Var[xi]

2 − 1

4
σ4

= 3

(
1

2
σ2
)2

+ 3

(
1

2
σ2
)2

− 1

2
σ4

=
6

4
σ4 − 1

2
σ4

= σ4, (3.17)

using the same identity as above, and the fact that for any x ∼ N (0, σ2) the fourth moment is
E[x4] = 3Var[x]2 [59]. The mean and the variance are thus

E[z] =

{
σ2w forH0

σ2w + σ2s forH1

(3.18)

Var[z] =

{
σ4w forH0

(σ2w + σ2s)
2 forH1

(3.19)

and therefore the approximated test statistic, using the CLT, is distributed as

T̂(x) ∼
{
N
(
Nσ2w, Nσ

4
w

)
forH0

N
(
N(σ2w + σ2s), N(σ2w + σ2s)

2
)

forH1.
(3.20)

Using this, one can derive the probability of false alarm and the probability of detection (similar to
[70])

PFA = p
(
T̂(x) > λ | H0

)
= Q

(
λ−Nσ2w√

Nσ2w

)
(3.21)

PD = p
(
T̂(x) > λ | H1

)
= Q

(
λ−N(σ2w + σ2s)√

N(σ2w + σ2s)

)
, (3.22)

where Q
(
λ−µ
σ

)
is the normalized Q-function (see appendix A.1.1). Rearranging eq. (3.21) yields

the threshold

λ =
√
Nσ2wQ−1(PFA) +Nσ2w = (

√
N Q−1(PFA) +N)σ2w (3.23)

and combining eq. (3.22) with eq. (3.23) results in the ROC [69]

PD = Q

(√
Nσ2wQ−1(PFA) +Nσ2w −N(σ2w + σ2s)√

N(σ2w + σ2s)

)

= Q

(
σ2wQ−1(PFA)−

√
Nσ2s

σ2w + σ2s

)
. (3.24)
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In contrast to the chi-square statistics, it is now possible to derive an analytical term for the number
of samples N required to achieve a certain PFA and PD pair [69]. Rearranging the PFA and PD
equations so that the threshold is isolated, setting them equal, and simplifying yields the desired
term

from eq. (3.22)︷ ︸︸ ︷√
N(σ2w + σ2s)Q

−1(PD) +Nσ2w +Nσ2s =

from eq. (3.21)︷ ︸︸ ︷√
Nσ2wQ−1(PFA) +Nσ2w√

N(σ2w + σ2s)Q
−1(PD) +Nσ2s =

√
Nσ2wQ−1(PFA)

Nσ2s =
√
N(σ2wQ−1(PFA)− (σ2w + σ2s)Q

−1(PD))

√
N =

σ2wQ−1(PFA)− (σ2w + σ2s)Q
−1(PD)

σ2s

N =
(σ2wQ−1(PFA)− (σ2w + σ2s)Q

−1(PD))
2

σ4s
. (3.25)

Verification and numerical comparison between the chi-square and CLT statistics will follow in
section 5.1.

Complexity

The ED requires N multiplications, followed by N − 1 additions, resulting in an overall algorithmic
complexity of O(N). This makes the ED easy to compute (CT-05) and not very resource-intensive
(CT-06) when compared to other detectors.

Limitations

While EDs are simple, have well-understood performance, and require minimal computational re-
sources, one major disadvantage arises: they require the precise knowledge of the background noise
power. If noise power levels are unknown or imprecise, the resulting performance will rapidly de-
grade, coming nowhere near the above analytically derived metrics (see section 5.1.2). It is thus of
paramount importance to precisely measure noise levels dynamically. To overcome this problem,
noise estimation methods will be presented in section 3.3 and combined with ED.

3.1.2. Eigenvalue Detection

The eigenvalue detector exploits the fact that signals are (in general) correlated in order to discrim-
inate them from noise [26, 61]. This is done by utilizing functions of the eigenvalues of the sample
covariance matrix as test-statistics, leading to the design of a detector that works, similar to the
ED, without any prior knowledge about the signal that is to be detected (MR-01).
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Detector

The received discrete-time sample vector x with length N , under both hypotheses, is again given
as

H0 : x = w (3.26)

H1 : x = s+w, (3.27)

where w ∼ CN
(
0, σ2wI

)
is the CWGN and s ∼ CN (0,Cs) is the signal vector with unknown

covariance matrix Cs. Constructing the following processing vectors [61]

w̃n = [wn, wn−1, . . . , wn−L+1]
T (3.28)

s̃n = [sn, sn−1, . . . , sn−L+1]
T (3.29)

x̃n = [xn, xn−1, . . . , xn−L+1]
T, (3.30)

where L is called the smoothing factor (the processing vectors can be thought of as sliding windows
with location n and length L), one has

H0 : x̃n = w̃n (3.31)

H1 : x̃n = s̃n + w̃n, (3.32)

which is a direct consequence of the original signal model. The statistical covariance matrix, with
respect to the processing vector x̃n, can be found as [72]

Rx̃ = [Cov[x̃i, x̃j ]]1≤i,j≤L

= E[(x̃n − E[x̃n])(x̃
H
n − E[x̃H

n ])]

E[x̃n]=0

= E[x̃nx̃
H
n ] (3.33)

and for w̃n and s̃n respectively

Rw̃ = E[w̃nw̃
H
n ] (3.34)

Rs̃ = E[̃sns̃
H
n ]. (3.35)

The covariance matrices of the processing vectors express the auto-correlations of the samples over
time; with time lag 0 to time lag L − 1. Since CWGN is not correlated, the covariance matrix of
the noise processing vector Rw̃ has no correlation for any time lag, except 0. This fact collapses
the noise covariance matrix into a simple diagonal matrix Rw̃ = σ2wI. Because signals are generally
correlated, the signal covariance matrix Rs̃ has off-diagonal entries 6= 0 and can not be collapsed
into a simple diagonal matrix. Thus, under the two hypotheses the statistical covariance matrices
with respect to the processing vector x̃n are [61]

H0 : Rx̃ = σ2wI (3.36)

H1 : Rx̃ = Rs̃ + σ2wI. (3.37)

Under H0, the off-diagonal elements in Rx̃ are all 0, while under H1 they are 6= 0 (because the
signal samples are assumed to be correlated). It is important to note, that the exact structure of
Rx̃ under H1 is not known. This however, is not a problem, as one can still differentiate between
the two hypotheses by taking all off-diagonal elements into account simultaneously.
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From a practical perspective, the statistical covariance matrix must be estimated using a finite
number of samples N . The so called sample covariance matrix can be found as follows [72]

R̂x̃ = E[x̃nx̃
H
n ] =

1

N − L+ 1

N∑

n=L

x̃nx̃
H
n (3.38)

and converges to the actual covariance matrix of the underlying process for N →∞.

A slightly different but fundamentally identical viewpoint can be achieved by considering the sample
auto-correlations of the received signal x, defined as [73]

R(l) = E[xnx
∗
n−l] =

1

N

N∑

n=1

xnx
∗
n−l l = 0, 1, . . . , L− 1, (3.39)

where N is again the number of samples available and L is the smoothing factor. The statistical
covariance matrix can then be approximated by

R̂x̃ =




R(0) R(1) · · · R(L− 2) R(L− 1)
R(1) R(0) · · · R(L− 3) R(L− 2)

...
...

. . .
...

...
R(L− 2) R(L− 3) · · · R(0) R(1)
R(L− 1) R(L− 2) · · · R(1) R(0)



. (3.40)

Here, one can clearly identify the symmetric Toeplitz structure of R̂x̃ [61]. Under H0 all auto-
correlations with l 6= 0 will be R(l) = 0, since the noise w is not correlated. Under H1 some (likely
all) auto-correlations will be R(l) 6= 0 due to the signal s being correlated.

One can directly use the properties of the diagonal and off-diagonal elements and construct the
following test T(x), which is called covariance absolute value (CAV) detector [73]. Here, rn,m
denotes the n-th row and m-th column entry of R̂x̃

γ1 =
1

L

L∑

n=1

L∑

m=1

|rn,m| (3.41)

γ2 =
1

L

L∑

n=1

|rn,n| (3.42)

T(x) =
γ1
γ2

H1

≷
H0

λCAV. (3.43)

Under H0 one expects that γ1 = γ2, since all off-diagonal elements are 0. Under H1 one expects
that γ1 > γ2; thus making the test-statistic T(x) > 1. While this test does work, multiple authors
have shown that there exists a more powerful test [52, 61, 63, 74].

Instead of using the entries of R̂x̃ directly, one can examine its eigenvalues instead. Denoting them
in descending order from largest to smallest, one has ν1 ≥ ν2 ≥ ν3 ≥ . . . ≥ νL. Since the covariance
matrix under H0 is R̂x̃ = σ2wI, all L eigenvalues will be ν1 = ν2 = ν3 = . . . = νL = σ2w. The
eigenvalues of R̂s̃ from largest to smallest are defined as ρ1 ≥ ρ2 ≥ ρ3 ≥ . . . ≥ ρL. Under H1 one
thus has νj = ρj + σ2w. Because ρ1 > ρL, it is possible to detect signals by computing the ratio of
the largest to the smallest eigenvalue [61]

T(x) =
νmax

νmin
=
ν1
νL

H1

≷
H0

λMME. (3.44)
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Figure 3.2.: Simplified MME block diagram.

The resulting detector is called the maximum-minimum eigenvalue (MME) detector. It is important
to note that the ratio in eq. (3.44) eliminates the influence of the noise eigenvalues and is therefore
independent of noise power. This is the major advantage of eigenvalue detection: it allows for blind
spectrum sensing (MR-01) without the knowledge of background noise power (CT-02).

A related eigenvalue detector is the so-called energy with minimum eigenvalue (EME) detector. As
the name suggests, it works by comparing the the normalized signal energy (signal power) with the
minimum eigenvalue

T(x) =
ξ(x)

νmin
=
ξ(x)

νL

H1

≷
H0

λEME (3.45)

with ξ(x) =
1

N

N∑

n=1

|xn|2. (3.46)

According to [52], the EME performs very similarly to the MME detector. However, because the
MME detector is more prevalent in research literature and because the statistics are simpler, only
the MME detector will be considered from here on (consult [73] and [61] for more information on
the CAV and EME detectors).

Approximate Statistics

To derive the statistics for the MME detector, one needs to examine the eigenvalue distribution of the
sample covariance matrix R̂x̃. Because of the limited number of available samples N , R̂x̃ deviates
from its underlying statistical distribution (the statistical covariance matrix Rx̃ is unknown). This
makes it difficult to analytically determine the threshold and its related statistics. The mathematical
process is very involved, relies on random matrix theory, and goes beyond this thesis’s scope. Thus,
only the results from [73, 74] will be presented here. However, the general procedure is similar
to the one presented in section 3.1.1 (see [75, 76] for more information on the theory behind the
statistical derivation).

One can formulate the probability of false alarm PFA and probability of detection PD for the MME
detector with the help of

c1 = (
√
N − 1 +

√
ML)2 (3.47)

c2 = (
√
N1 −

√
ML)(

1√
N − 1

+
1√
ML

)1/3 (3.48)
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as the following approximate functions

PFA ≈ 1− F1

(
λMME(

√
N −

√
ML)2 − c1

c2

)
(3.49)

PD ≈ 1− F1

(
λMMEN +N(λMMEρL − ρ1)/σ2w − c1

c2

)
, (3.50)

where F1(·) denotes the Tracy–Widom CDF of order 1 (see appendix A.1.3) and where M is the
oversampling factor. The threshold λMME can be approximated by

λMME ≈
(
√
N +

√
ML)2

(
√
N −

√
ML)2

(
1 +

(
√
N +

√
ML)−2/3

(NML)1/6
F−1
1 (1− PFA)

)
, (3.51)

where F−1
1 (·) denotes the inverse Tracy–Widom CDF of order 1. In contrast to the threshold of the

ED, the threshold of the MME detector does not depend on the noise power σ2w; making it very
robust against changing and uncertain noise power levels (CT-02).

Complexity

The MME detector consists mainly of two parts: computing the sample covariance matrix R̂x̃

and finding its eigenvalue decomposition. Noting that the covariance matrix is symmetric and
Toeplitz, one only needs to compute the “top row”; that is all R(l), l = 0, . . . , L− 1 (see eq. (3.40)).
This equates to LN multiplications and L(N − 1) additions, resulting in an O(LN) algorithmic
complexity. Eigenvalue decomposition generally has a O(L3) complexity (where L is the matrix
size). This results in an overall complexity of O(LN + L3) [61].

Limitations

When compared to other spectrum sensing methods, the eigenvalue detector is relatively resource-
intensive. Its algorithmic complexity, with increasing covariance matrix size L, grows cubically. This
requires careful implementation, likely with the support of hardware acceleration (see section 6.2),
especially when real-time requirements are to be met (CT-04). Additionally, the eigenvalue detector
requires relatively many samples N in order for the sample covariance matrix to be sufficiently
accurate. This further increases complexity and leads to high sensing latencies (CT-05). More
accurate statistics, needing fewer samples, are an ongoing research topic [63, 77, 78].

The eigenvalue detector assumes that the signal samples are correlated. If this is not the case, the
detector will not be able to detect the signal. However, signal samples can usually assumed to be
correlated due to the following reasons [61]:

1. The signal is oversampled at the receiver. When the sampling frequency fs is larger than the
bandwidth B by some factor M , then M consecutive signal samples will be correlated. There
is usually some form of oversampling present, especially in wideband sensing applications (see
section 3.2).
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Narrowband method Blind Complexity Robustness

Matched filter* ✗ medium high

Energy ✓ low low

Covariance* ✗ medium medium

Eigenvalue ✓ high high

Cyclostationary* (✓) very high high

Table 3.1.: Comparison of narrow band detection methods (*presented in appendix B.1).

2. The propagation channel h(τ, t) (see section 2.2) has time dispersion, meaning that the signal
symbols are spread out in time. This results in correlation between adjacent signal samples as
they travel through the channel. Time dispersion in the channel can, for example, be caused
by multipath propagation, where the multipath delay exceeds the symbol period.

3. The signal symbols are correlated themselves. Due to redundant patterns in signal protocols
and data, signals are almost always intrinsically correlated.

3.1.3. Conclusion

This section, and the accompanying appendix B, presented the most prevalent narrowband spectrum
sensing methods in research literature [29–31]. The matched filter (appendix B.1.1) and covariance
detector (appendix B.1.2) are not applicable to spectrum sensing on SALSAT, as they require a priori
knowledge of the signal trying to detect (MR-01). While cyclostationary detection (appendix B.1.3)
can be adapted to blind spectrum sensing, the resulting detector has very high complexity, severely
degrading run time performance. Therefore, cyclostationary detection is also not applicable to
SALSAT (CT-06).

Similarly to covariance and cyclostationary detection, eigenvalue detection uses properties of signals
to differentiate them from noise. However, it does this by not assuming any specific signal type
or covariance structure while at the same time offering reasonable complexity. Nonetheless, its
run time performance is still not very good, making its implementation in low-power systems,
with little computational resources, challenging (CT-06). Energy detection is the simplest of all
presented algorithms; it has the lowest complexity and the best run time behavior. Its performance
metrics are very well understood, enabling precise tuning of PFA and PD values. However, energy
detection requires exact knowledge of background noise, making it not applicable to SALSAT by
itself (CT-02). Nevertheless, with the help of noise estimation, energy detection becomes suitable
for real-world applications (see section 3.3.3).

3.2. Wideband Spectrum Sensing

Thus far, the spectrum sensing methods presented are limited to the detection of signals in a single
frequency band; they only provide a scalar occupancy value H0/H1 (see section 2.3). Wideband
spectrum sensing, in contrast to narrowband spectrum sensing, involves observing multiple subbands
simultaneously and identifying subbands that are occupied by a signal and those which are free (see
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fig. 1.4 and MR-02). The overall spectrum utilization can be significantly improved by dividing
the wideband into multiple parallel narrowbands and jointly sensing for spectrum opportunities on
narrow subbands. This section provides a general overview of the most common wideband spectrum
sensing methods [30, 79–81]. Methods relevant to this thesis will be presented in greater depth,
while those not directly relevant will only briefly be considered in appendix B.2.

3.2.1. Wideband Signal Model

Under the assumption that the individual signal transmissions, spread over the spectrum band, are
uncorrelated, the detection model generalizes to

H0,l : xl = wl (3.52)

H1,l : xl = sl +wl, (3.53)

where l = 1, 2, . . . , L denotes the l-th subband Bl of bandwidth Bl; the total observed band is
B =

⋃L
i=1 Bl with bandwidth B =

∑L
i=1Bl [28, 81]. The detection problem then becomes one

of extracting the L subband signals xl, each of bandwidth Bl, from the original signal x and
subsequently applying the test statistic

T(xl)
H1,l

≷
H0,l

λl (3.54)

to each of them, yielding a decision vector H = [H0,1/H1,1,H0,2/H1,2, . . . ,H0,L/H1,L]
T where

each entry either indicates a free or occupied spectrum subband. This requires L thresholds
λ = [λ1, λ2, . . . , λL]

T which directly determine the PFA = [PFA,1, PFA,2, . . . , PFA,L]
T and PD =

[PD,1, PD,2, . . . , PD,L]
T vectors, which contain the desired probability of false alarm and probability

of detection for every subband [79]. There exists a great deal of literature about jointly tuning
these parameters to achieve optimal throughput, especially when one assumes correlation between
individual subband signals [82–84]. The treatment of such topics would go beyond this thesis’s
scope and is therefore not further considered here.

3.2.2. Wideband Energy Detection

As the name suggests, the wideband energy detector (WED) expands the concept from narrowband
energy detection to wideband signals. The incoming signal x is first split into L subband signals
x̂l with the help of spectral estimation, where x̂ denotes the frequency domain representation of x
(see appendix A.3). Then L narrowband EDs are applied in parallel to each x̂l [28, 79, 81].

Spectral Estimation

Splitting the wideband signal x into its subband signals x̂l requires spectral estimation, or more
concretely, power spectral density (PSD) estimation (see appendix A.3.2). The PSD characterizes
the signal’s power content at each frequency, thereby allowing the analysis of spectral subbands and
their energies [64].
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There are a multitude of spectral estimation techniques available. They can mostly be subdivided
into parametric and non-parametric methods [64, 85]. The parametric approaches assume some
underlying statistical model in order to achieve better performance on fewer data samples. Because
SALSAT requires blind spectrum sensing (MR-01), generally1 no such model assumptions can be
made, thus ruling out parametric spectral estimation techniques.

Non-parametric methods generally rely on the Fourier transform, which transforms signals from the
time domain into the frequency domain, thereby exposing the signal’s frequency components [64,
86]. The concept of Fourier transforms in the realm of spectral estimation can further be advanced
by employing modern techniques, such as multitaper power spectral density (MT-PSD) estimation
[87–89]. The MT-PSD estimator achieves superior estimation results by using carefully designed
tapering functions to improve the estimated spectrum variance, without compromising on the level
of incurred spectral leakage [79, 90]. Although the MT-PSD estimator has superior performance,
and is robust against noise inaccuracies, it has notably higher computational and implementational
complexities, when compared to simple Fourier transforms (CT-06) [79]. Additionally, many com-
munication systems have built-in Fourier transform processors (more precisely FFT cores [91, 92])
that can be utilized to estimate the spectrum over wide frequency ranges, making the Fourier trans-
form a prime candidate for spectral estimation. Thus, this thesis will only concern itself with Fourier
transform-based spectral estimation.

Because the data vector x consists of discrete samples, one needs to employ the discrete Fourier
transform (DFT). Implementations of the DFT rely on the fast Fourier transform (FFT) algorithm,
which is a lower complexity implementation of the DFT, making it practically feasible. The FFT
gets computed on short segments of the incoming discrete data samples and reduces the O(N2)
complexity of the DFT to O(N logN) [64, 86]. Common FFT sizes are powers of two 2n with
n = 8, . . . , 14, resulting in FFT lengths of 256 to 8192. To reduce spectral leakage coming from sharp
edges at the beginning and the end of the data segments, one can employ windowing, which smoothes
the segment edges. Prominent window types are the Hann and Flattop window (see fig. A.9).
Employing no special window results in a rectangular window. This segmentation and windowing
procedure is called short-time Fourier transform (STFT), as it computes a short windowed Fourier
Transform [64, 86]. Appendix A.3 provides a more formal overview of the Fourier transform, the
DFT, FFT, STFT, and their mathematical relations. There, one can also find the definition of
Parsevals theorem [64], which is the pillar on which wideband energy detection is built. It states
that the energy of signals is preserved through the Fourier transform, thus making wideband energy
detection feasible.

Detection

After the time domain signal x = [x1, . . . , xN ]
T has been converted into its frequency domain

counterpart x̂ = [x̂1, . . . , x̂K ]T by the STFT, where k is now a discrete variable of frequency, the
wideband test-statistic

T(x̂l) =
∑

k∈Bl

|x̂k|2
H1,l

≷
H0,l

λl (3.55)

1One could assume very general models, thereby making them applicable to a wide range of signal types. This,
however, is not further studied here as the performance gains are, for the most part, not justified in comparison
to non-parametric methods [85].
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Figure 3.3.: Wideband energy detector block diagram (derived from [70]).

is applied; resulting in the decision vector H = [H0,1/H1,1,H0,2/H1,2, . . . ,H0,L/H1,L]
T of length L,

where each entry indicates a free or occupied spectrum subband [79, 81], and where |x̂k|2 is the
PSD of xn. Summing over a subspace of the PSD, denoted here in terms of the subband Bl, results
in the energy contained in that PSD subspace (or subband). By adjusting the number of STFT
samples going into a specific subband Bl, one can dynamically adapt the resolution of the WED
and, for example, increase the resolution in some subband while reducing the resolution in other
frequency regions.

Statistics

Since wideband energy detection operates analogous to narrowband energy detection, the statistics
derived in section 3.1.1 can generally be adapted. However, when applying these statistics to a
single subband Bl, one needs to take the reduced noise bandwidth into account. This is because the
CWGN power σ2w is spread uniformly across the total original bandwidth B [93]. The noise power
in Bl is thus only

σ2l,w =
Bl
B
σ2w. (3.56)

When a signal is spread over multiple bands, the same concept applies to its power σ2s . However,
since the signal power is usually not uniformly spread across its bandwidth, modeling this phe-
nomenon becomes more difficult. Therefore, the signal power σ2l,s will explicitly be given in terms
of the power in a specific subband Bl. Thus, the reduction in noise power, compared to the signal
power, results in an effective boost of the SNR.

With these modifications in mind, one can derive the SNR in a given subband Bl as

SNRl =
σ2l,s
σ2l,w

=
B

Bl

σ2l,s
σ2w

(3.57)

and when all bands have the same bandwidth B1 = B2 = . . . = BL, then

SNRl = L
σ2l,s
σ2w

. (3.58)

Another important factor that needs to be considered is the reduced number of samples N that
underlie the computed energy in a subband Bl. The number of samples are, similar to the contained
power, proportional to the relative bandwidth of Bl [94]. When N is the total number of samples
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used to compute the STFT, then the samples Nl underlying the energy estimate of band Bl are

Nl =
Bl
B
N (3.59)

and for equal bandwidths

Nl =
N

L
. (3.60)

This reduction in the number of samples results in reduced accuracy, or increased variance, of the
spectrum band energy estimate. It also encompasses the absolute noise power reduction. Thus, one
only needs to adjust the number of samples Nl and the SNRl in a subband, but not the noise power
σ2l,w. The SNRl adaption will be done trough a relative increase of the signal power σ2l,s, resulting
in

σ̃2l,s =
B

Bl
σ2l,s (3.61)

and for equal bandwidths

σ̃2l,s = Lσ2l,s. (3.62)

With the above presented relations, one can derive the wideband statistics for the chi-square and
CLT models.

Chi-Square The probability of false alarm PFA,l and the probability of detection PD,l for a subband
Bl are

PFA,l = 1− Fχ2
2Nl

(
2λl
σ2w

)
(3.63)

PD,l = 1− Fχ2
2Nl

(
2λl

σ2w + σ̃2l,s

)
. (3.64)

The threshold λl and the ROC equate to

λl =
σ2w
2
F−1
χ2
2Nl

(
1− PFA,l

)
(3.65)

PD,l = 1− Fχ2
2Nl



F−1
χ2
2Nl

(
1− PFA,l

)

1 +
σ̃2
l,s

σ2
w




= 1− Fχ2
2Nl



F−1
χ2
2Nl

(
1− PFA,l

)

1 + SNRl


 . (3.66)

CLT The CLT approximated probability of false alarm PFA,l and probability of detection PD,l for
a subband Bl are given as

PFA,l = Q

(
λl −Nlσ

2
w√

Nlσ2w

)
(3.67)

PD,l = Q

(
λl −Nl(σ

2
w + σ̃2l,s)√

Nl(σ2w + σ̃2l,s)

)
. (3.68)
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The threshold λl, the ROC and the required number of samples Nl are

λl = (
√
NlQ

−1(PFA,l) +Nl)σ
2
w (3.69)

PD,l = Q

(
σ2wQ−1(PFA,l)−

√
Nlσ̃

2
l,s

σ2w + σ̃2l,s

)
(3.70)

Nl =
(σ2wQ−1(PFA,l)− (σ2w + σ̃2l,s)Q

−1(PD,l))
2

σ̃4l,s
. (3.71)

Complexity

The complexity of the WED can be derived from the FFT complexity, which is O(N logN), and L
narrowband EDs running in parallel, which have a total complexity of O(NL). Thus, the overall
complexity equates to O(N logN +NL).

Limitations

Similar to narrowband energy detection, wideband energy detection requires the precise knowledge
of background noise power levels. Noise uncertainty severely degrades the detection performance of
the WED. It is thus crucial to precisely measure noise levels dynamically. Noise estimation methods
will be presented in section 3.3 and subsequently combined with wideband energy detection.

3.2.3. Wideband Eigenvalue Detection

Eigenvalue detection can (theoretically) be adapted to wideband operation by merely splitting the
signal x into its subband components xl and applying a narrowband eigenvalue detector on each
xl; yielding L eigenvalue detection results. Since the eigenvalue detector operates on time-domain
data, it is beneficial to apply a time-domain filtering method. One could employ several bandpass
filters in parallel. Every bandpass filter hl would be tuned to only let the frequency components
of its corresponding subband Bl through. This filter configuration is known as a filter bank [85].
However, when employing such a system, two main problems emerge.

Whitening

The first problem one encounters when combining eigenvalue detection (or correlation-based detec-
tion in general) with some form of signal preprocessing is the induced correlation by the prepro-
cessing systems into the data. Any filtering, both analog and digital, induces correlation [26, 61].
Because most RF systems employ some form of preprocessing or filtering, this is a general problem
when working with correlation or eigenvalue-based detection. Thus, the in section 3.1.2 presented
narrowband eigenvalue detector also suffers from this problem.
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This so-called noise coloring [85] can be resolved by multiplying the covariance matrix Rx̃ with a
whitening matrix Q, which reveres (or neutralizes) the correlation induced by preprocessing [26, 52,
61]. The whitened covariance matrix can be found as

R′
x̃
= Q−1Rx̃Q

−1, (3.72)

so that under H0, R′
x̃

again becomes

R′
x̃
= Q−1Rx̃Q

−1 = σ2wI. (3.73)

Because the whitening matrix Q is only related to filter and preprocessing systems, it can be
precomputed in advance by recording the (sample) covariance matrix Rx̃ when measuring only
(uncorrelated) CWGN

Q = R
1
2

x̃
. (3.74)

In order to reduce the variance of Q, one could average multiple whitening matrices together (see
section 5.4).

Limitations

The second problem arising when employing L bandpass filters and L eigenvalue detectors is the
amount of resources required to implement such a system. Real-time, software-only implementations
would not be practically feasible. Even hardware-based implementations would quickly hit their
limit, especially in a resource-constrained environment like SALSAT (CT-06, CT-05). One solution
would be to reduce the bandpass filter bank to a single tunable bandpass filter that can dynamically
adjust its center frequency (and ideally also its bandwidth). Feeding the bandpass filtered signal
into a single eigenvalue detector that detects the presents of a signal in only a single subband at a
time would significantly reduce the implementation cost. Some search algorithm would then look
for an unoccupied subband of desired width by adjusting the bandpass filter’s center frequency
until the eigenvalue detector detects no signal present. As soon as the current subband becomes
occupied, the detector would start searching again. This would induce severe latencies, as there is
no guarantee on how long the search takes until an unoccupied subband is identified. This approach
would also only provide occupancy information for one subband at a time. It would not provide
general spectrum occupancy information and is thus not well suited for research applications, such
as SALSAT

3.2.4. Wavelet Detection

PSD estimation was introduced in section 3.2.2. The estimated PSD entails the power of the received
data samples with respect to frequency. Under the assumption that the power of a subband Bl
occupied by some signal is greater than the power of noise only subbands, the WED is able to
decide on the presence or absence of a signal in each spectrum subband. By assuming that the
power spectral characteristic is smooth within each subband but exhibits a discontinuous change
between adjacent subbands Bl and Bl+1, one can identify and locate spectrum holes by analyzing
the irregularities in the estimated PSD with the wavelet transform (WT) (see appendix A.3.6) [95–
99].
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Figure 3.4.: Simplified wavelet detection block diagram.

A significant advantage of wavelet-based spectrum sensing comes from the fact that the aforemen-
tioned wideband spectrum sensing techniques have assumed that the boundaries fl and widths Bl
of subbands Bl are known a priori. However, this assumption is not practical, as signals in hetero-
geneous environments can have different bandwidths and occupy different parts of the predefined
subbands [79, 81]. By defining the subbands based on information coming from the estimated PSD,
wavelet-based spectrum sensing can overcome this problem and determine the boundaries of the
subbands without prior knowledge of the locations and widths of subbands.

Detector

Wavelet-based spectrum sensing, similar to wideband energy detection, operates on the estimated
PSD Sx(f). Let ψs(f) denote the discrete wavelet function

ψs(f) =
1

s
ψ

(
f

s

)
(3.75)

dilated by the dyadic scaling factor s; which is defined using powers of two, i.e., s = 2m,m =
1, 2, . . . ,M [64, 86]. Commonly used wavelets include the Gaussian derivative wavelet family, as de-
fined in appendix A.3.6. Of special interest to wavelet-based spectrum sensing is the first derivative
Gaussian wavelet ψ′

s(f). When applied to the PSD, the continuous wavelet transform (CWT)

W ′
s(f) = Sx(f) ∗ ψ′

s(f) =
1

s

∫ ∞

−∞
x(τ)ψ′(

τ − f
s

)dτ (3.76)

it is able to extract edges (also known as singularities) and detect gradient changes [97]. Edges
of the subbands correspond to local maxima of the absolute value of the CWT when using the
first derivative Gaussian wavelet. This method is known as the wavelet transform modulus maxima
(WTMM) [97, 98]. One can thus extract subband boundaries by searching for local maxima

fl = argmaxima
f

|W ′
s(f)|, (3.77)

where a local maxima x̌ is generally defined as [100]

maxima
f

↔ ∃δ > 0 : f(x̌) > f(x), x ∈ [x̌− δ, x̌+ δ], (3.78)

with more information about maxima finding (also known as peak detection) and the size of δ
following in section 5.3. It is important to note that the CWT is carried out in the frequency
domain on Sx(f), while Sx(f) relates to the received samples x via the STFT.

Due to the characteristics of the wideband spectrum and the PSD, strong noise power levels may
negatively impact the detection of edges. To partially overcome this problem, a product of several
first derivative Gaussian wavelet transforms is calculated, thus suppressing noise and sharpening
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the edges. This technique is referred to as the wavelet multiscale product (WMP) [98] and expressed
by

UM (f) =

M∏

M=1

W ′
s=2m(f) (3.79)

yielding the improved spectrum edge detection algorithm

fl = argmaxima
f

|UM (f)|. (3.80)

Increasing M results in more robust edge detection, with the incurred cost of being less sensitive.
Typical values for M include M = 3, . . . , 6.

The detected subband edges fl can be used to reconstruct the subbands Bl with bandwidth Bl; the
subbands not necessarily need to have the same bandwidth B1 6= B2 6= . . . 6= BL.

Complexity

A filterbank implementation of the WT has O(N) time complexity in certain cases (see ap-
pendix A.3.6). Many peak finding algorithms have O(N) complexity. With the complexity of
the FFT being O(N logN), the overall complexity of the wavelet-based edge detection equates to
O(N(1 +M) + N logN), making it relatively efficient. However, software implementations of the
WT often have worse time complexity.

Limitations

While wavelet-based spectrum sensing provides a powerful and flexible tool for spectrum edge
detection, it suffers from various problems. The first coming from the fact that sharp edges not
merely arise at the boundaries of the subbands but also arise due to spurious signals or noise peaks.
These undesired edges may degrade the boundary estimation [98, 99]. This phenomenon can be
reduced by employing the WMP as mentioned earlier. Another deficiency of the wavelet-based
edge detection algorithm comes from the fact that it requires relatively sharp edges at subband
boundaries. When subbands transition smoothly between one another, wavelet-based edge detection
has a hard time detecting edges. Lowering M increases the edge detection sensitivity while at the
same time also increasing the probability for false edges to arise. As discussed below, one can
further enhance wavelet-based spectrum sensing by introducing more rigorous edge criteria and by
combining it with other spectrum sensing methods, such as wideband energy detection [99]. Energy
detection helps to prevent false edges from occurring when employing sensitive wavelet-based edge
detection.

3.2.5. Conclusion

This section outlined the most prominent wideband spectrum sensing methods and evaluated them
for operation on SALSAT. While compressed wideband sensing offers attractive reductions in sam-
pling rate demands, it is not yet mature enough for actual implementation (see appendix B.2).
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Wideband method Blind Complexity Robustness

Wideband energy ✓ medium low

Wideband eigenvalue ✓ very high high

Wavelet-based (✓) medium low

Compressed* (✓) very high low

Table 3.2.: Comparison of wideband detection methods (*presented in appendix B.2).

Analyzing the wideband spectrum with spectral estimation techniques enabled the adaption of
narrowband energy detection to multiple bands and gave rise to STFT-based wideband energy
detection. Combined with sensitive wavelet-based spectrum edge detection, wideband energy de-
tection can operate in heterogeneous spectrum environments by dynamically adjusting the location
and width of spectral subbands. Eigenvalue-based filter banks or tunable narrowband filters provide
robust sensing performance by not needing information about background noise power levels. It
was shown how adverse correlation, introduced by preprocessing and filtering, could be mitigated
through whitening matrices. However, high complexity implementation and high latency operation
make eigenvalue-based wideband sensing not applicable to constrained and real-time environments.
Despite its shortcomings, the ability to operate independent of background noise levels, by ex-
tracting and separating signal from noise components through eigenvalues, will prove valuable, as
presented in the following section.

3.3. Noise Estimation

In conjunction with wavelet-based spectrum edge detection, wideband energy detection proved to
be the prime wideband spectrum sensing method in the previous section. However, uncertain
knowledge of background noise power levels severely limits the performance of wideband energy
detection. The exact knowledge of the background noise power σ2w is of paramount importance to
energy detection. Therefore, this section will concern itself with noise power estimation methods
and their effects on wideband energy detection.

3.3.1. Free-Band Noise Estimation

One possible noise estimation algorithm consists of estimating the noise power from noise-only
samples. Under the assumption that the noise samples w are IID and zero-mean Gaussian w ∼
CN

(
0, σ2wI

)
, the maximum likelihood estimator (MLE) of the background noise power is the ED

σ̂2w =
1

N

N∑

n=1

|wn|2 (3.81)

normalized by the number of samples N [94, 101]. Assuming that the noise level is approximately
constant across the total observed band B, and with the knowledge that some subband Bl is signal
free, i.e., consists of noise samples only, one could estimate the noise power for all of B by applying
the above-presented noise estimator to samples from Bl. Intuitively, the more samples are available
to the estimator, the lower the estimation variance and the better the estimate (this intuition is
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Figure 3.5.: Dependency loop in wideband energy detection and noise estimation.

supported by statics [101, 102]). Thus, one would ideally try to find some signal-free subband
Bl that is as wide as possible and remains signal-free for the longest time possible, increasing the
time-bandwidth product so that the maximum number of noise-only samples N can be used for the
noise estimate.

Recalling the previously presented wideband detection model

H0,l : xl = wl (3.82)

H1,l : xl = sl +wl, (3.83)

where l = 1, 2, . . . , L denotes the l-th subband Bl of bandwidth Bl, the task of finding noise-only
subbands directly emerges as the inverse task of signal detection. This is very convenient, as it
allows relatively simple noise estimation using the results already available from spectrum sensing.
One can use subbands classified as signal-free for noise estimation (hence the name free-band noise
estimation).

Limitations

When using free-band noise estimation in combination with energy detection, multiple problems
arise. Because energy detection relies on noise estimation and noise estimation, as just presented,
relies on the results from energy detection, a dependency loop emerges (see fig. 3.5). Energy detec-
tion will inevitably make mistakes. More precisely, it is going to miss signals with the probability of
miss PM and wrongfully classify noise as signals with the probability of false alarm PFA. Assuming
some ED in the recent past predicted more signal samples to be noise than noise samples to be
signals, then the energy contained in the supposed noise-only samples is higher than it would be if
it only included noise-only samples. Consequently, the noise estimator will predict the estimated
noise power σ̂2w to be higher than the actual noise power σ2w. Because the ED is going to base its
future detection on σ̂2w, which is higher than it should be, it will predict even more signal samples to
be noise-only; thus closing the dependency loop. This can, depending on the system and the envi-
ronment, lead to dramatic prediction errors. When starting the detection system, one encounters a
similar situation: the ED requires a noise power estimate from the noise estimator, while the noise
estimator needs signal-free samples from the ED. One somehow needs to break this dependency
loop and bootstrap the system.
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A solution to this problem could come from wideband eigenvalue detection (section 3.2.3). Because
it does not rely on noise power estimates, eigenvalue detection breaks up the dependency loop pre-
sented above; while simultaneously providing very accurate spectrum sensing results. However, as
already discussed, eigenvalue detection is not practically applicable to wideband sensing. Never-
theless, one could employ the single bandpass filter eigenvalue sensing method and use the energy
detection results as a heuristic for the search algorithm that searches for free spectrum bands. This
method is significantly slower than energy detection. However, because noise level changes are very
slow phenomena (noise power can typically be assumed stationary for a couple of minutes [55, 59])
the speed of the wideband eigenvalue detection, using a tunable bandpass filter, appears to be suf-
ficient for noise estimation. The here presented noise estimation method is novel, and it remains to
be seen whether it is practically relevant.

3.3.2. Eigenvalue Noise Estimation

Due to the shortcomings of the above-presented noise estimation from noise-only samples, this
section will introduce a method that can estimate noise from samples that contain noise and signals.
Similar to eigenvalue detection, it utilizes the eigenvalue decomposition of the sample covariance
matrix to separate noise and signal components in data samples [103, 104].

Sample Covariance Matrix

Since the signal s and the noise w are statistically independent, the covariance matrix Rx̃ of size L
can be decomposed into

Rx̃ = Rs̃ +Rw̃ = Rs̃ + σ2wI. (3.84)

Denoting the eigenvalues of Rx̃ in descending order from largest to smallest as ν1 ≥ ν2 ≥ . . . ≥ νL
and the eigenvalues of Rs̃ from largest to smallest as ρ1 ≥ ρ2 ≥ . . . ≥ ρL, one finds that νj =
ρj + σ2w ∀j = 1, 2, . . . ,M and νj = σ2w ∀j = M + 1,M + 2, . . . , L; where M is the number of
signal-bearing eigenvalues in Rx̃. The L −M smallest eigenvalues of Rs̃ are zero; therefore, all
L −M smallest eigenvalues of Rx̃ contain only noise [61, 105]. If some portion Bl of the total
bandwidth B is occupied by signals, one finds that Bl/B = M/L. Thus, the noise power σ2w can
theoretically be found by inspecting any of the L−M smallest eigenvalues, as long as some portion
of the wideband spectrum B is free from signals [103].

Because of the limited number of samples N , one can only compute the sample covariance matrix

R̂x̃ =
1

N − L+ 1

N∑

n=L

x̃nx̃
H
n , (3.85)

which diverges from the statistical covariance matrix for finite N (see section 3.1.2).

Minimum Description Length Eigenvalue Selection

The number of signal-bearing eigenvalues M of R̂x̃ can be estimated by using the minimum descrip-
tion length (MDL) criterion developed in [106] and adapted to signal processing in [105]. MDL uses
an information-theoretic approach to model selection, where the model of interest in the context of
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noise estimation is one that best describes the eigenvalue distribution of R̂x̃. In other words: one is
trying to find the minimum number of eigenvalues M needed to describe the correlation structure
induced into R̂x̃ by the signals in x. The general form of the MDL criterion is

MDL = − log f(x|Θ̂) +
1

2
k logN, (3.86)

where f(x|Θ̂) is a parameterized family of probability densities from which the one that best fits
the data needs to be selected. Θ̂ is the MLE of the model parameters, and k is the model size. The
second term in eq. (3.86) can be thought of as a penalty term, penalizing larger model sizes. When
observing data x the optimal model parameters are those that minimize the MDL.

When trying to detect the number of signals present in some observation vector x with the help of
the eigenvalues νj of the sample covariance matrix R̂x̃, the MDL was derived in [105] to be

M̂ = argmin
M
−(L−M)N log

g(M)

a(M)
+

1

2
M(2L−M) logN, (3.87)

where g(M) and a(M) are the geometric and arithmetic mean of the L − M smallest sample
eigenvalues respectively

g(M) =
L∏

j=M+1

ν
1/(L−M)
j (3.88)

a(M) =
1

L−M
L∑

j=M+1

νj . (3.89)

Thus, after obtaining M̂ from MDL, the noise related eigenvalues of R̂x̃ can be assumed to be
νj ∀j = M̂ + 1, M̂ + 2, . . . , L

Marchenko–Pastur Eigenvalue Fitting

Defining the empirical distribution function (EDF) of the eigenvalues of R̂w̃ as

F R̂w̃(x) =
Number of eigenvalues of R̂x̃ ≤ x

L
(3.90)

for which it can be shown that F R̂w̃ → FW almost surely for every x, as N,L→∞ with c = L/N
[107, 108]. FW is known as the Marchenko–Pastur distribution (see appendix A.1.4). Its density
will hereafter be denoted as MP(c, σ2w), for some c and noise power σ2w. One needs to construct K
linearly spaced values πk, with 1, 2, . . . ,K, in the range of [σ̂2w,1, σ̂

2
w,2], where

σ̂2w,1 =
νL

(1 +
√
c)2

(3.91)

σ̂2w,2 =
νM̂+1

(1 +
√
c)2

, (3.92)

and apply a goodness of fit test to find the optimal πk

σ̂2w = arg min
πk

∥∥∥∥∥∥∥
dF R̂

x̃,L−M̂ −MP



(
1− M̂

L

)
c, πk




∥∥∥∥∥∥∥
2

, (3.93)

which yields the estimate of the noise power σ̂2w [103, 104]. dF R̂
x̃,L−M̂ denotes the EDF density of

the L− M̂ smallest eigenvalues of R̂x̃ and ‖·‖2 is the L2 norm.
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Figure 3.6.: Eigenvalue-based noise estimation block diagram.

Limitations

Similar to eigenvalue detection (section 3.1.2 and section 3.2.3), eigenvalue-based noise estimation
relies on the eigenvalue decomposition of the sample covariance matrix. Thus, it is similarly com-
putationally expensive and susceptible to correlations introduced by preprocessing and filtering.
Because noise levels change relatively slowly and because only a single noise estimator is needed
per WED, the increased complexity introduced by this estimator is manageable. The solutions
introduced in section 3.2.3 to mitigate unwanted correlations are also directly applicable to the here
presented eigenvalue noise estimation.

It is important to note that, while eigenvalue-based noise estimation involves two numerical opti-
mizations, they are a lot less computationally expensive than the optimizations required by com-
pressed sensing (see appendix B.2). The search space of possible values for the minimization consists
of L values for eq. (3.87) and K values for eq. (3.93), with both L,K ≪ N . Additionally, as shown
in section 5.5, the fitting of eigenvalues to the Marchenko–Pastur distribution is generally not nec-
essary; taking the average of the noise-only eigenvalues appears to be sufficient.

3.3.3. Wideband Energy Detection with Noise Estimation

Using the estimated noise power, the WED can be adapted to become independent from background
noise. Normalizing the WED from section 3.2.2 with the estimated noise power σ̂2w and the number
samples Nl from subband Bl results in

T(x̂l) =
1

σ̂2w

1

Nl

∑

k∈Bl

|x̂k|2
H1,l

≷
H0,l

λl. (3.94)

Because the noise power σ̂2w is an estimated value, the statistics for the WED need to be adjusted to
account for its probabilistic behavior. Seminal work in that regard was conducted in [101, 102, 109].
There, the energy detector statistics were modeled as the ratio of two scaled chi-square distributions,
yielding a Fisher–Snedecor distribution FNl,Me , where Nl denotes the number of samples used by the
energy detector itself and where Me denotes the number of samples used for the noise estimate σ̂2w;
with Nl and Me consisting of disjoint data samples. The exact statistics and their derivations would
go beyond this work’s scope and are thus not presented. Instead, only the approximate statistics
will be shown. The combination of the wideband energy detector statistics (see section 3.2.2) with
the noise estimation statistics from [101, 109] could not be found in related literature and thus
appear to be novel.
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CLT Statistics

The by the CLT approximated probability of false alarm PFA,e,l and probability of detection PD,e,l
for a subband Bl with estimated noise variance are

PFA,e,l = Q




λe,l − 1√
Nl+Me

NlMe


 (3.95)

PD,e,l = Q




λe,l
1+SNRl

− 1
√

Nl+Me

NlMe


 . (3.96)

The threshold λe,l and the ROC can thus be written as

λe,l = Q−1(PFA,e,l)

√
Nl +Me

NlMe
+ 1 (3.97)

PD,e,l = Q



Q−1(PFA,e,l) +

1√
(Nl+Me)/(NlMe)

1 + SNRl
− 1√

Nl+Me

NlMe


 . (3.98)

3.3.4. Conclusion

The here presented noise estimation methods make the WED applicable to real-world environments,
where noise power levels are unknown. By using the adapted performance metrics it is possible
to analytically model the WED with noise estimation. Because of its relative simplicity, when
compared to free-band noise estimation, eigenvalue noise estimation will be chosen as the premier
noise estimation method. Moreover, simulations conducted in section 5.5 show that it actually
outperforms the free-band noise estimator in terms of estimation accuracy.

3.4. Summary

This chapter provided an overview of the most prominent narrowband and wideband spectrum
sensing algorithms, as well as noise estimation methods; less relevant spectrum sensing methods
were introduced in the accompanying appendix B. Wideband energy detection, combined with
wavelet-based edge detection and noise estimation, emerged as the ideal wideband sensing method
for application on SALSAT. It was introduced by first deriving appropriate narrowband detection
methods and expanding them to wideband detection; while also introducing wavelet-based edge
detection. The presented methods were evaluated and compared under the in section 1.4 presented
requirements and constraints. The chapter ended with the presentation and evaluation of noise
estimation methods. It was shown that the shortcomings of wideband energy detection could be
compensated by complementing it with noise estimation and wavelet-based edge detection meth-
ods. The analytically derived detectors and their performance metrics will subsequently be verified
through simulations in chapter 5.
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4. Simulation Framework

The following chapter will present the simulation framework SpecSens, which has been developed in
the course of this thesis. It consists of numerous functions and tools, aiding effective development
and integration of spectrum sensing methods. It provides the foundation on which the spectrum
sensing algorithms that were analytically derived in chapter 3 will be implemented and simulated (see
chapter 5). With the integrated Monte Carlo simulation framework, algorithms can be simulated,
verified, and compared.

SpecSens is written entirely in Python [110], utilizing several packages available through the Python
package manager. Amongst others: NumPy [111], SciPy [112], PyWavelets [113] and TracyWidom
[114]. More information regarding the software, such as version numbers, a complete package list,
and installation procedures, can be found in the accompanying software repository [115]. The
package structure is kept modular, thus easing development and simplifying software maintenance.
In addition to SpecSens, numerous interactive Jupyter Notebooks [116] are provided in the software
repository [115]. They demonstrate the operation of the developed algorithms and visualize the
simulation results.

4.1. Python

Python has many advantageous features when compared to C/C++ or Matlab. In comparison to
C/C++, Python, through its packages NumPy and SciPy, provides many powerful numerical data
and signal processing functions. In combination with Jupyter Notebook and Matplotlib [117], Python
becomes an interactive development environment, making scientific software development very ef-
fective. However, because Python is an interpreted language and relies heavily on multiple layers of
abstraction, it is generally not as efficient as C/C++ [118]. While Python is a good choice for de-
velopment and simulation, it is not well suited when implementing software in resource-constrained
environments or developing real-time applications. Compared to Matlab, which is proprietary and
closed source, Python and its packages are open source, freely available, and maintained, not by a
single entity, but by a large community. Python is also a much richer language, providing many lan-
guage features that Matlab does not have (e.g., namespaces, package manager, named arguments,
etc.). These features make software development more productive, especially in large projects.

4.2. Test Data Generation

Simulating algorithms on data makes it possible to evaluate them and compare their performance.
Because at the time of writing this thesis, no real data from SALSAT was available (see section 1.3.1),
data samples were generated using the following methods.
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Figure 4.1.: Snapshot of an oversampled time (a) and frequency (b) representation of
a randomly generated complex signal (eq. (4.1)) with additive CWGN at
SNRdB = 0. Signal parameters for (b): fc = −100 kHz, fm = 3.9 kHz,
fd = 15 kHz, fs = 1MHz.

Noise

Complex white Gaussian noise (CWGN) samples w are generated by drawing N 2-dimensional
samples from a multivariate real Gaussian distribution N (µ,C), with µ =

(
0
0

)
and C =

( σ2
w/2 0

0 σ2
w/2

)

(see appendix A) [60, 65]. The noise power σ2w can either be provided in linear or decibel σ2w,dB form.

If provided in decibels, power values are converted to linear values according to σ2w = 10σ
2
w,dB/10.

Besides the sample frequency fs (in Hz), which constitutes the sample bandwidth, one can provide
the desired length either in seconds s or in number of complex samples N .

It is important to note that power and energy (for both noise and signals), in the context of
this simulation framework, do not have any real physical meaning or physical unit. They are
simply mathematical concepts arising when transforming dimensionless numerical values in ways
that would, if one were using units with actual physical dimensions, yield the dimensions normally
associated with those mathematical transformations.

Narrowband Signal

Narrowband signals are generated according to [119], which provides common test signals for cog-
nitive radio and spectrum sensing research, used by many authors [33, 52, 61, 73]. The signals from
[119] are adapted to the complex I/Q domain (similar to the samples generated in [120]), yielding
the following signal equation

x(t) = exp

(
i

(
2πfct+

fd
fm

sin(2πfmt) + 2πϕ

))
, (4.1)

where ϕ ∈ [0, 1) is the random phase, drawn from a uniform distribution. The time variable t
(in s) is throughout this thesis referred to by its discrete-time counterpart n. fc, fm and fd are
the center frequency, the modulation frequency, and the deviation frequency (in Hz), respectively.
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Figure 4.2.: (a) is a visualization of the in eq. (4.2) presented power matrix and (b) the re-
sulting frequency representation of the complex wideband signal and additive
CWGN with σ2w,dB = 0 (also see fig. C.1).

The resulting discrete signal vector x is normalized and scaled by the signal power σ2s (or σ2s,dB),
analogous to the above-presented noise data generation. One can also set the sample frequency fs
and signal length as desired.

Figure 4.1 (a) shows a exemplary complex narrowband signal with additive CWGN (which is highly
oversampled for illustrative purposes). The frequency-domain visualization in fig. 4.1 (b), commonly
known as a spectrogram (see appendix A.3.5), was produced by employing a STFT with a 1024-point
flattop window.

Wideband Signal

Since wideband spectrum sensing methods need to be evaluated, wideband signals are required (see
section 3.2). The here generated wideband signals consist of multiple narrowband signals (based on
the narrowband signal from fig. 4.1), interleaved in frequency and time. To control the frequency,
time, and power, with which a single narrowband signal appears in the wideband signal, a power-
matrix P is supplied to the wideband signal generator. An exemplary power-matrix P ∈ R

10×10

is

P =




−100−100−100−100−100−100−100−100−100−100
−100−100 −3 0 3 5 7 10 −100−100
−100−100−100−100−100−100−100−100−100−100
−100 0 3 3 0 −100 0 5 0 −100
−100−100−100−100−100−100−100−100−100−100
−100−100 10 5 0 −5 −7 −10 −13 −100
−100−100−100−100−100−100−100−100−100−100
−100−100−100−100−100 0 0 −100−100−100
−100 10 10 10 −100−100−100−100−100−100
−100−100−100−100−100−100−100−100−100−100




, (4.2)
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with each of the 10 rows resembling the power level (in dB) of a single subband over time, and where
each column represents a snapshot of the wideband signal at a specific point in time. A power level
of −100 dB results in virtually no signal being present, while power levels of around 0 dB represent
moderately powerful signals. For this example, the total signal bandwidth is 1MHz, and the signal
length is 0.5 s; the signal thus consists of 500× 103 complex samples.

A graphical power level representation of P can be seen in fig. 4.2 (a). The resulting, generated
wideband signal, with additive CWGN, is visualized in fig. 4.2 (b). Power level smoothing is
required between different timesteps to avoid high-frequency peaks introduced by sharp power level
changes. While this matrix-based wideband signal generation method is not very versatile, as it only
allows for the generation of checkerboard-like wideband signal patterns, it is nonetheless adequate
for this thesis’s simulation purposes. In particular, the matrix representation allows for practical
performance evaluation of wideband spectrum sensing methods by comparing the power-matrix
with the detection-result-matrix (see section 5.2).

Doppler Shift Signal

Of particular interest to SALSAT, and space-related RF research, in general, are Doppler-shifted
signals. Doppler shift is caused by the transmitter’s relative motion to the receiver (see fig. 4.3 (a)).
This results in shifted frequencies, proportional to the relative speed of the transmitter and the
receiver. Because the relative speeds of objects in space can be very high, Doppler-shifted signals
are a common occurrence in space. Thus, SpecSens incorporates a Doppler shift signal generator,
utilizing the following relations

x = (0.5T − t)v (4.3)

α = arctan(x/d) (4.4)

σ2s,shift,dB = −
∣∣∣∣∣

√
d2 + x2

0.5Tv

∣∣∣∣∣

3

σ2s,dB (4.5)

fc,shift =
2αv

cπ
fcarr + fc, (4.6)

where c is the speed of light in vacuum (in m/s) and t ∈ [0, T ] the time (in s). v is the relative speed
and d the minimum distance of the transmitter and receiver (in m/s and m, respectively). This
results in scaled signal power levels σ2s,shift,dB and shifted center frequencies fc,shift. An exemplary
Doppler shifted signal, with realistic physical values, is visualized in fig. 4.3 (b).

4.3. Monte Carlo Simulation

To verify the analytically derived statistics from chapter 3, such as the PFA and PD equations,
quantitative Monte Carlo (MC) simulations are necessary [121]. They aid in surveying algorithms
and comparing their performance. MC simulations rely on repeated random sampling to obtain
numerical results that characterize the underlying statistical phenomenons. Because large numbers
of simulations need to be conducted for MC to be effective, the here employed MC simulations
are implemented using multithreading, employing Python’s multiprocessing framework. This en-
ables the parallel execution of multiple simulation environments on all available CPU cores and
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(a) Doppler shift visualization

Receiver

Transmitter

x

α
d

Sig
nal

Figure 4.3.: Doppler signal with v = 8km/s, d = 6km, fcarr = 450MHz and σ2s,dB = 0.
fc = −10 kHz, fm = 32 kHz, fd = 50Hz. fs = 100 kHz, sampled over 15 s
seconds, noise power at σ2w,dB = 5 (also see fig. C.2).

thus yields a significant speedup compared to single-threaded implementations. Synchronization
and data distribution are handled internally by the SpecSens package, providing a convenient and
modular simulation interface. All simulation-related parameters can be passed as arguments to
SpecSens, allowing for a clean programming interface. Thanks to a deterministic tree-like repli-
cation and distribution of entropy, a single random seed characterizes the complete multithreaded
simulation, allowing for reproducible random simulations. With the help of NumPy’s seed sequenc-
ing, correlation in parallel running random number generators is mitigated.

The MC simulation framework provides two levels of parallelization: generations and iterations
(see appendix D). A generation can be thought of as a specific RF environment with a set of fixed
parameters. Parameters are randomly generated using a prespecified range of possible parameter
values and are generally drawn from a Gaussian distribution. Possible parameters are signal and
noise power levels, as well as noise uncertainty. Every generation performs a specified number
of iterations, where each iteration consists of generating data samples from the generation’s RF
environment, running the desired spectrum sensing method, and recording the detection outcome.
After all iterations for a specific generation have been performed, the generation will store the
simulation results. Once all generations have successfully executed, the resulting statistics are
computed and visualized (see chapter 5).
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5. Implementation and Simulation

Having introduced the theoretical concepts behind relevant spectrum sensing methods in chapter 3,
this chapter will continue with their implementation and simulation. Following a similar path
as chapter 3, the narrowband energy detector (ED) will be discussed first. Next, the concepts
from narrowband energy detection will be expanded to wideband energy detection, followed by
simulations of wavelet-based spectrum sensing. Afterwards, narrowband and wideband eigenvalue
detection, utilizing finite impulse response (FIR) filters and whitening matrices, will be presented.
These concepts lay the foundation for the then-following implementation and simulation of noise
estimation methods. At last, wideband energy detection is combined with noise estimation to yield
the final wideband spectrum sensing algorithm.

The following simulations are conducted with SpecSens, the simulation framework presented in
chapter 4. They are run on an Intel Core i7-6700K processor at up to 4.20 GHz, with Ubuntu
18.04 installed. All 8 logical cores are utilized, with no other relevant tasks running during simu-
lations. The software versions of the employed packages, and Python itself, are documented in the
accompanying software repository. Because of the breadth of the here investigated spectrum sensing
methods, only a small fraction of all conducted simulations and visualizations will be presented.
Many more, accompanied by in-depth explanations, can be found in the form of Jupyter Notebooks
in the mentioned software repository (see [115]).

5.1. Energy Detection

This section starts by verifying the analytically derived chi-square and CLT statistics from sec-
tion 3.1.1. The ED used in the following simulations is implemented in Python according to
eq. (3.6).

5.1.1. Chi-Square Statistics

The threshold for the chi-square ED is determined using eq. (3.11). The following parameters were
used for the simulation: generations = 200, iterations = 300 (total iterations = 60× 103), signal
length = 0.001 s (N = 1000), SNRdB = −10 (σ2w,dB = 10, σ2s,dB = 0), PFA = 0.1. All other signal
parameters were identical to the signal presented in fig. 4.1 (b). This resulted in the following
values, which were analytically computed before starting the simulation: λ = 13102.0687, PD =
0.9577. The simulation took 9.48 s and calculated the following numerical values: PFA = 0.0998,
PD = 0.9591. Figure 5.1 (a) and (b) depict the convergence of the running averages of the per
generation calculated PFA and PD values to their theoretical counterparts. They indicate that
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Figure 5.1.: (a) and (b) depict the convergence of the numerical PFA and PD values to
their theoretical counterparts with an increasing number of MC simulation
generations. The blue dots are the running average after each generation. In
(c), the probability densities and histograms of the theoretical and numerical
energies are shown. The red vertical line is the calculated threshold λ to
achieve the desired PFA = 0.1.

theory and simulation agree with one another. In fig. 5.1 (c) one can see how the histograms of
the calculated energies from all simulation iterations overlap with the distributions underlying the
theoretical derivations.

Figure 5.2 visualizes the impact of different sample sizes N and different SNRdB values on the
ROC derived in eq. (3.13). One can see that (theoretically) any desired PFA and PD pair can
be achieved by merely increasing the number of samples N . However, this comes at the cost of
increased sensing time. Additionally, the impact of noise uncertainties results in the so called SNR
wall : an uncertainty threshold below which a detector will fail to be robust, no matter how long it
can observe [93, 94].

5.1.2. Noise Uncertainty

As already alluded to in chapter 3, EDs rely on the precise knowledge of background noise power
levels. Introducing 1 dB of noise uncertainty, meaning the noise power is not known precisely but
statistically distributed as σ2w,dB ∼ N (10, 1), renders the ED completely useless. The results of
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Figure 5.2.: ROCs with varying number of samples N and SNR (in dB) under ideal con-
ditions. SNR is set to −10 dB for variable N , and N = 1000 for variable
SNR.

the simulation with 1 dB of noise uncertainty can be seen in fig. 5.3, where all other simulation
parameters are identical to the previous simulation (fig. 5.1). In fig. 5.3 (a) and (b) one can see
how the numerically computed PFA and PD values converge to different values than analytically
calculated, and that the energy distributions in fig. 5.3 (c) deviate significantly. This phenomenon
is caused by the above mentioned SNR wall. Because noise power levels are not precisely known in
real-world applications, the ED is not practically feasible if used by itself.

5.1.3. CLT Statistics

This section will compare the performance of the chi-square ROC (see eq. (3.13)) with the CLT
ROC (see eq. (3.24)). The chi-square statistics are analytically precise, while the CLT is only an
approximation that can be reliably used when the number of samples N is large. As can be seen in
fig. 5.4 (a), with sample size N = 500, no significant difference between the two statistics emerges.
The CLT ROC (almost) perfectly approximates the chi-square ROC. However, when the sample
size is small, as in fig. 5.4 (b), the CLT approximation becomes very poor. Because sample sizes
will almost always be in a range where these errors are negligible, only the CLT statistics will be
used hereafter. They are simpler, allow for more parameters to be analytically derived, and require
less computational resources to evaluate (see section 3.1.1).

5.2. Wideband Energy Detection

The following simulations of the wideband energy detector (WED) are generated using the theoret-
ically derived results from section 3.2.2. More precisely, the spectral estimation is based on the in
section 3.2.2 presented methods using a custom STFT utilizing the FFT provided by SciPy. The
custom STFT employs a non-overlapping 1024-point windowing function. The accompanying WED
is implemented in Python according to fig. 3.3 and eq. (3.55). The PFA, PD, λ, etc., are based on
the in section 3.2.2 presented statistics.
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Figure 5.3.: Simulation result with noise uncertainty. One can see that the average sim-
ulation values do not converge to the theoretical values (a) (b) and that the
numerical energy distributions strongly diverge from the theoretical ones (c).
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Figure 5.4.: Comparing the impact of sample size N on the accuracy of the CLT statistics.
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Figure 5.5.: Simulation results of the wideband energy detector using a rectangular win-
dow with N = 1024 and PFA = 0.1.

5.2.1. Rectangular Window

The simulation shown in fig. 5.5 used the following parameters: generations = 200, iterations = 300
(total iterations = 60× 103), signal length = 0.001 024 s (N = 1024), SNRdB = −15 (σ2w,dB = 18,
σ2s,dB = 3), PFA = 0.1. The WED monitored L = 10 separate non-overlapping bands, each with a
bandwidth of 100 kHz (see section 4.2). The simulation results were generated by observing band
l = 3, where a signal with fc = −150 kHz was randomly generated. All other signal parameters
are identical to the signal presented in fig. 4.1 (b). The simulation took 14.6 seconds to execute.
As can be seen in fig. 5.5 (a) and (b), the analytically derived PFA = 0.1 and PD = 0.9305, using
λ = 7264.7314, were well met by the simulated PFA = 0.1005 and PD = 0.9350. Observing the
energy distributions in fig. 5.5 (c), one can see that the histograms slightly deviate towards lower
energy values when compared to the theoretical curves. This is likely due to a minuscule amount
of the signal’s energy leaking into other subbands l 6= 3. The curves still fit the histograms in the
overlapping areas (close to the threshold λ) well, resulting in relatively accurate statistics.
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Figure 5.6.: Simulation results of the wideband energy detector using a N = 1024 flattop
window (see appendix A.3.5). The simulated energy distribution (c) strongly
deviates from the theoretically derived curves, leading to entirely wrong statis-
tics in (a) and (b).

5.2.2. Other Windows

When using windowing functions other than the rectangular window, such as the flattop window,
the statistics of the WED break down. The means µ of the energy distributions do not significantly
change compared to the simulations employing the rectangular window. However, the standard
deviations σ, depending on the type of window, increase by a factor of about 1.6× to 3.5×. This
observation appears to be novel in the context of wideband energy detection, as no mention of this
phenomenon could be found in related literature. The change in variance is likely caused by the
change in the energy distribution of the PSD induced by the different window types. It is currently
not possible to analytically describe this phenomenon, since there exists no literature about the
impact of windowing functions on the performance statistics of WEDs. Thus, only rectangular
windows will be employed hereafter.
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Figure 5.7.: Energy detection using a wideband signal generated with the power matrix
from eq. (4.2), with σ2w,dB = 10, PFA = 0.01 and L = 10 subbands. The
detector in (b) struggles to detect the low power signals in subband l = 5,
starting with STFT bins at around 100.

5.2.3. Wideband Detection Visualization

To better comprehend and interpret wideband energy detection, this section introduces a visually
appealing representation of the detection results. Based on the in eq. (4.2) depicted wideband signal
power matrix, a 0.2 second long (N = 200× 103) wideband signal, otherwise identical to the one
visualized in fig. 4.2, was generated and combined with additive CWGN at σ2w,dB = 10. A L = 10
band WED, employing a 1024-point rectangular window, was applied, resulting in a 10×195 energy
matrix visualized in fig. 5.7 (a). One can see the signal components in the corresponding subband
at their respective energy levels. Following that, a threshold based on the in section 3.2.2 presented
equations using PFA = 0.01 was applied to the in fig. 5.7 (a) depicted energy levels, resulting in
the in fig. 5.7 (b) illustrated detection results. The detector can almost perfectly reconstruct the
presence of the originally modulated wideband signal. However, one can see that the non-zero
PFA value introduces spurious false detections. The detector is also not able to reconstruct the
low power wideband signal in band l = 5 starting with STFT bins at around 100. As depicted in
eq. (4.2) the signal power levels in these timesteps are ranging from σ2s,dB = −5 to σ2s,dB = −13.
For σ2s,dB = −5 the PD = 0.7, while for σ2s,dB = −10 it is only at PD = 0.096; thus, resulting in poor
sensing performance. The available samples N = ⌊1024/10⌋ = 102 per STFT bin and subband are
not enough to discriminate between the low signal power levels and the relatively high noise power.
One could increase the PD by either increasing the allowed PFA, which would result in more false
detections, or by increasing the number of samples per subband through longer STFTs or fewer
subbands (at the cost of higher latency and less resolution, respectively; see the ROC curves in
fig. 5.2).

When using a higher resolution WED with L = 100 subbands, even very fine signals, such as the
in fig. 4.3 presented Doppler signal, can be detected. Because the overall signal bandwidth is lower
(fs = 100 kHz), the STFT window length is reduced to 512. The resulting energies and detections
can be seen in fig. 5.8 (a) and (b) respectively. Because of the relatively high SNR, the signal was
well detected, despite the small STFT bin sizes.
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Figure 5.8.: Wideband energy detection using a 512-point rectangular STFT window ap-
plied to the Doppler signal from fig. 4.3, with σ2w,dB = 5 and σ2s,dB = 0. Using
PFA = 0.01 and L = 100 subbands, the Doppler signal is well detected by the
wideband energy detector.

5.3. Wavelet Detection

This section presents the simulation results of the wavelet spectrum sensing method from sec-
tion 3.2.4. Wavelet edge detection locates spectrum holes by analyzing irregularities in the estimated
PSD using the WT (see appendix A.3.6).

5.3.1. Single PSD

The PSD of a random wideband signal is depicted in fig. 5.9 (a). It was generated using the SpecSens
simulation framework by employing a 1024-point rectangular windowed STFT on a wideband signal
with different subsignal power levels σ2s,dB = 0 . . . 10 and σ2w,dB = 0 additive CWGN. To reduce the
impact of the noise and to “sharpen” spectral edges, 10 consecutive PSDs were averaged together
(similar to Welch’s method [122]). The resulting “cleaner” PSD can be seen in fig. 5.9 (b). The
number of consecutive averaged PSDs needs to be carefully tuned depending on signal shapes, the
maximum tolerable detection latencies, and the SNR. Wavelet edge detection is applied to the
PSD from fig. 5.9 (b) using the WMP of the first derivative Gaussian wavelet with M = 4 (see
section 3.2.4). The resulting normalized spectral peaks, together with the peak detection results (red
dots), are visualized in fig. 5.9 (c). The peak detector is based on SciPy’s build-in peak detection.
To reduce the detection of false peaks, a minimum required distance (denoted as δ in eq. (3.78))
and minimum height are set (see [99] for a similar procedure). If a peak is detected, any smaller
peaks in the range of ±20 kHz are dominated by the larger peak and ignored. Peaks are also only
considered for detection when reaching above 0.1 in the normalized detection spectrum (fig. 5.9 (c)).
This results in relatively stable detection of edges under reasonable SNRs. The detected spectral
edges, together with the original PSD, are shown in fig. 5.9 (d).
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(d) Spectrum boundaries in PSD

Figure 5.9.: Visualization of wavelet edge detection. Multiple PSDs, all similar to (a),
are averaged to produce (b). Wavelet edge detection and peak detection are
applied to (b), resulting in (c). The detected spectral edges in the original
PSD are visualized in (d).

5.3.2. Spectrogram

Through SpecSens, the in fig. 5.10 (a) depicted random power matrix is converted into a wideband
signal with additive CWGN as shown in fig. 5.10 (b). Applying many consecutive edge detections
to each PSD results in spectral edges, as shown in fig. 5.10 (c). The wavelet edge detection was
again applied to a 10× averaged PSD using a PSD history buffer. It is possible to identify the
detected edges’ delayed start on the left side of signals first appearing and overhang on the right
side of fading signals. This phenomenon is introduced by the PSD averaging. Increasing the size of
the PSD history buffer further exacerbates this effect while at the same time reducing the impact
of noise and providing more stable detection results. When no signal in the wideband spectrum
is present, the normalization of the resulting spectral peaks leads to a dramatic increase of false
detections (see 0.4 s to 0.45 s in fig. 5.10 (c)). Wavelet edge detection itself is not able to reliably
prevent these false detections.

However, when combining wavelet detection with wideband energy detection, false detections can
be removed by comparing the corresponding subband energy content against an energy detection
threshold. This leads in much cleaner detection results, as depicted in fig. 5.10 (d). Subbands not
“passing” the energy detection threshold are discarded and not further considered. Incorporating
wavelet edge detection into wideband energy detection reduces the required bandwidth needed to
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Figure 5.10.: The wideband spectrum in (b) contains the spectral representation of a wide-
band signal generated by SpecSens using the in (a) depicted power matrix.
The wavelet edge detection results are shown in (c) and combined with en-
ergy detection in (d). The centerline of a detected signal indicates its relative
strength: the stronger the signal, the thicker the centerline.

Figure 5.11.: Wavelet-based edge detection applied to the Doppler signal from fig. 4.3.
Wavelet edge detection requires less bandwidth when running on sparse sig-
nals compared to wideband energy detection.
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Figure 5.12.: When applied to low SNR signals, wavelet-based edge detection performance
is worse than standalone wideband energy detection. Comparing the detec-
tion results with fig. 5.7 (b), one can see that wavelet edge detection misses
more signals.

store or transmit the detection results as the sparsity of the wideband spectrum can be exploited.
This enables high-resolution detection with minimal resource demands (CT-06), when compared
to standalone WEDs. A prime example of this can be seen in fig. 5.11 (a) and (b). Wavelet edge
detection combined with wideband energy detection was applied to the same Doppler shifted signal
as shown in fig. 5.8. While the WED from fig. 5.8 returned a 100 entry long array for every detection
step (mostly filled with zeros), the wavelet edge detector returned a linked list of signal objects1.
When using wider bands or detecting with higher resolution, this reduction in required bandwidth
becomes even more apparent. It is important to also note, that combining wavelet edge detection
with wideband energy detection results in virtually no false detections (see fig. 5.10 (d) and fig. 5.11
(b)).

Applying wavelet-based edge detection to the same wideband spectrum as used in fig. 5.7 leads
to fewer subband signals being detected when compared to the detection results of the WED (see
fig. 5.12). Even moderately strong signals are not reliably detected. This is due to the fact that
wavelet edge detection is more susceptible to low SNR when compared to standalone wideband
energy detection. Nonetheless, when noise levels are comparatively low and detection latencies
tolerable, wavelet edge detection combined with wideband energy detection offers resource-friendly
and high-resolution detection results.

5.4. Eigenvalue Detection

In contrast to energy detection, eigenvalue detection does not rely on information about noise power
levels. Thus, it can be reliably employed in environments with unknown and changing background
noise (CT-02). Figure 5.13 (a) shows the sample covariance matrix R̂x̃ of the eigenvalue detector
(for L = 20) when applied to N = 10× 103 CWGN samples with σ2w,dB = 0 (σ2w = 1). Because the

1The wavelet edge detector returns a linked list of signal objects for every detection step. At time 7 s in fig. 5.11,
the edge detector returned a linked list with a single signal object with the following attributes: center frequency
fc ≈ −5.86 kHz, bandwidth B ≈ 1.56× 103 kHz, energy = 1.58× 103. At time 0.09 s in fig. 5.10, the detector
returned a linked list with 3 entries. For more information, see [115].
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Figure 5.13.: Sample covariance matrices and eigenvalue distributions of the eigenvalue
detector. (a) and (c) visualize the sample covariance matrix and eigenvalue
distribution of the eigenvalue detector (with L = 20) when applied to only
CWGN. When a signal is introduced, the covariance matrix and eigenvalue
distribution transform to (b) and (d).

noise is uncorrelated, one can clearly see how the matrix has ones on the main diagonal and zeros
elsewhere (refer to section 3.1.2 for information). All 20 eigenvalues are thus approximately equal
to one (see fig. 5.13 (c)). When a signal with σ2s,dB = 0 is introduced, the sample covariance matrix
transforms to fig. 5.13 (b), where the non-diagonal entries are now also non-zero. This results in
the eigenvalues being not evenly distributed anymore (see fig. 5.13 (d)). Comparing the largest
eigenvalue νmax to the smallest eigenvalue νmin allows the eigenvalue detector to detect the presence
of signals, independently of noise power levels (see eq. (3.44)).

5.4.1. Whitening

As already discussed in section 3.2.3, the eigenvalue detector, while being robust against unknown
or changing noise power levels, is very sensitive to correlation introduced by signal preprocessing
and filtering. As all RF systems employ some form of preprocessing, it is almost always necessary to
introduce whitening. The characteristics of the induced correlations are described by the whitening
matrix Q, or its inverse Q−1. Using the in eq. (3.72) presented relations, it is possible to eliminate
the correlations and whiten the noise.
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Figure 5.14.: Figure (a) shows the filtered wideband spectrum using a 16-tap FIR band-
pass filter. This results in unwanted correlation as depicted in the sample
covariance matrix (b) and eigenvalue distribution (c). The whitening matrix
Q−1 in (d) mitigates the impact of the FIR filter by whitening the correlated
noise.

The wideband eigenvalue detector requires a tunable bandpass filter (see section 3.2.3). The here
presented detector employs a 16-tap FIR bandpass filter. The resulting wideband spectrum, filtered
and noise only (σ2w,dB = 5.0, with filter center frequency ff,c = −300 kHz and filter bandwidth
ff,B = 200 kHz), is depicted in fig. 5.14 (a). While one can see that the filter suppresses noise com-
ponents outside its passband, it is also clearly visible how the filter does not attenuate all unwanted
frequencies completely. The regions just outside the intended passband are only attenuated but not
fully rejected. Employing larger FIR filters with more taps allows for sharper filter edges at the
expense of higher phase shift and implementation cost. As can be seen in its sample covariance
matrix (fig. 5.14 (b)) and eigenvalue distribution (fig. 5.14 (c)), the filtered noise is highly correlated.
Applying the eigenvalue detector without any form of whitening would not result in good sensing
performance. The inverse whitening matrix Q−1, visualized in fig. 5.14 (d), can be used to remove
the induced correlations. The sample covariance matrix and its whitening counterpart must be at
least as large as the correlation time-delay of the filtering or preprocessing (here 16, because the
FIR filter has 16 taps).

To effectively suppress signals in neighboring subbands, the in fig. 5.15 presented eigenvalue detector
simulation employed a 64-tap FIR bandpass filter. Because larger filters with even more correlation
time-delay are a common occurrence (IIR filters are an extreme example), it is not practically feasible
to rely on the whitening matrix alone to remove the effects of filtering and preprocessing. More
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Figure 5.15.: Wideband eigenvalue detector simulation with a 64-tap FIR bandpass fil-
ter and 3 dB noise uncertainty. The detector used a L = 10 covariance
and whitening matrix by employing the novel correlation error correction
method.

advanced measures are required. Thus, this thesis introduces an additional pretraining step, in which
the correlation-induced detection error is learned through several simulation trials with randomized
wideband noise and signal samples. Similarly to the whitening matrix computation, the pretraining
can be done in advance and does not influence the detectors real-time performance. The learning
is done not at the covariance matrix, but at the detector level. This novel whitening technique
allowed the in fig. 5.15 presented simulation to only employ a L = 10 covariance and whitening
matrix. Because the eigenvalue detector’s complexity grows with O(LN + L3) (see section 3.1.2),
this new method significantly reduces the required computation time when compared to a L = 64
covariance matrix; thereby reducing the implementation cost and bringing the eigenvalue detector
with whitening in the realm of embedded applications (CT-06, CT-05). Only very basic simulations
have been performed thus far, as there is a paucity of literature on decorrelation in the realm of
eigenvalue spectrum sensing. More work on actual implementations, using real data samples, needs
to be conducted (see section 6.2).

The simulation results shown in fig. 5.15 used the following parameters: σ2w,dB = 17.5 with 3 dB of
noise uncertainty (σ2w,dB ∼ N (17.5, 3)), σ2s,dB = 1 (average SNRdB = −16.5), signal length 0.01 s

(N = 10× 103)). The covariance matrix size was set to L = 10. All signal parameters were identical
to the signal presented in fig. 4.1 (b), with the signal’s center frequency set to fc = −300 kHz. The
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64-tap FIR bandpass filter center frequency was tuned to ff,c = −300 kHz with a filter bandwidth of
ff,B = 200 kHz. The probability of false alarm was set to PFA = 0.1. This resulted in the following
analytically derived values: λ = 1.1648 and PD = 0.9095 (using the equations from section 3.1.2).

Training the whitening matrix over 256 steps took 2 minutes and 16 seconds. The actual simulation,
using 100 generations and 20 iterations (total iteration = 2× 103) took about 25 seconds. It
computed the following numerical values: PFA = 0.0863 and PD = 0.9409 (see fig. 5.15 (a) and
(b)). Because their derivation is very complex, no theoretical distributions are presented in fig. 5.15
(c). The higher than theoretically computed PFA and PD values are likely due to some remaining
correlation not completely being removed by the whitening procedure. However, through more
simulations (which for reasons of space are not shown here, see [115]), it could be shown that
the eigenvalue detector statistics (eq. (3.49), eq. (3.50) and eq. (3.51)) are not very accurate in
general. They require manual tuning of some parameters, which is far from desirable. Additionally,
the statistics are based on limiting approximations. Thus, it is reasonable to assume that they
are somewhat inaccurate for a finite number of samples. Nonetheless, the presented simulations
show that, in contrast to energy detection, eigenvalue detection can operate in uncertain noise
environments. Moreover, the here discussed methods of removing unwanted correlations are directly
applicable to eigenvalue noise estimation.

5.5. Noise Estimation

This section presents the simulation results of the in section 3.3 introduced noise estimation methods.
It will start with noise estimation from signal free-bands (see section 3.3.1), continue with eigenvalue
noise estimation (see section 3.3.2), and end by comparing various noise estimation methods. Be-
cause wideband energy detection relies on the precise knowledge of background noise power levels,
the presented results are of paramount importance to the final WED (see section 5.6).

5.5.1. Free-Band Noise Estimation

As presented in section 3.3.1, free-band noise estimation uses signal-free subbands to extract noise
information from data samples. Using eq. (3.81), it can estimate the noise power σ̂2w. The in
fig. 5.16 presented WED simulation was conducted in a similar environment as the simulation
shown in fig. 5.5. However, to speed up and simplify the simulation, only four subbands were used
(L = 4). The noise σ2w,dB = 12.5 and signal σ2s,dB = 1 power levels were adjusted accordingly. The
noise uncertainty was set to 3 dB (σ2w,dB ∼ N (12.5, 3)) and the noise estimation buffer length, used
to smooth noise estimation results, was set to 10; meaning that the last 10 noise estimation results
were used to produce the current noise estimate. The simulation, using the following analytically
computed values: λ = 1.0840, PD = 0.9208 (with PFA = 0.1), took about 15.9 s to complete. Previ-
ously conducted simulations showed that the (wideband) ED itself cannot handle noise uncertainties
(see fig. 5.3, where only 1 dB of noise uncertainty was present). However, the simulation results
shown in fig. 5.16, using the in section 3.3.3 presented statistics, clearly indicate that the WED
using noise estimation can operate in noise uncertain environments. The analytically computed
values accurately approximate the numerical values: PFA = 0.1025 and PD = 0.9205 (see fig. 5.16
(a) (b)).
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Figure 5.16.: Wideband energy detection with noise estimation from signal free-band sub-
band at SNRdB = −11.5 and 3 dB noise uncertainty using a 10× noise
estimation buffer.

As already discussed in section 3.3.1, free-band noise estimation relies on the fact that the subband
used for noise estimation is actually noise-free. While previously discussed methods (e.g., wideband
eigenvalue detection) can be used to ensure the absence of signals in the subband used for noise
estimation, the in fig. 5.16 presented simulation used prior knowledge of signal-free subbands. The
energy detector was simulated in band l = 1, while noise estimation was conducted in a signal-free
subband l = 3. This simplified the simulation, as no suitable dynamic free-band search and selection
algorithm was available.

The here presented noise estimator and ED combination is the “de facto standard” in much of the
available spectrum sensing literature [26, 65, 94, 101, 102, 109]. Most authors assume that one has
prior knowledge of signal-free subbands, which, especially for space-related applications, is a false
premise (see section 1.3.4).

5.5.2. Eigenvalue Noise Estimation

Compared to free-band noise estimation, eigenvalue-based noise estimation does not require any
information about signal-free subbands. It uses the eigenvalue decomposition of the sample covari-
ance matrix to extract noise information from wideband signals (see section 3.3.2), making it more
robust and easier to use than free-band noise estimation. The only prior mention of this type of
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Figure 5.17.: Visulization of eigenvalue-based noise estimation: applying the MDL cri-
terion on the eigenvalues from (a) results in (c). (b) presents the MDL
criterion equation components separately. Using the estimated noise-only
eigenvalues, one can fit the Marchenko–Pastur distribution to the eigenvalue
histogram and obtain the final noise estimate (d).

noise estimation in the realm of spectrum sensing appears to be in [123]. The simulations conducted
by the authors of [123] “only” employed a narrowband ED. Additionally, they did not give any an-
alytical description of its performance. The remainder of this chapter will thus concern itself with
eigenvalue noise estimation and its application to wideband energy detection.

The wideband signal used for the visualizations in fig. 5.17 consisted of four narrowband signals,
each with σ2s,dB = 1, and additive noise at σ2w,dB = 9. The MDL criterion was applied to the in
fig. 5.17 (a) depicted sorted eigenvalue distribution (of the sample covariance matrix). The model
error and model complexity with increasing model size M̂ are plotted in fig. 5.17 (b); while the
overall MDL criterion is shown in fig. 5.17 (c) (see eq. (3.87)). Selecting the minimum value of the
MDL criterion, here M̂ = 8, and discarding all eigenvalues larger than the 8th eigenvalue leaves
only the noise-dependent eigenvalues. Using the remaining (noise only) eigenvalues to construct a
histogram (also known as EDF (see eq. (3.90)) and fitting the Marchenko–Pastur distribution (see
eq. (3.93)) results in fig. 5.17 (d). The Marchenko–Pastur distribution of the actual (correct) noise
power and the distribution using the mean of the eigenvalues, are also shown in fig. 5.17 (d). One
can see that in the here presented environment, the noise estimation using the histogram-based fit
outperforms the eigenvalue average.
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5.5.3. Noise Estimation Comparison

This section provides a quantitative comparison of different noise estimators and their estimation
errors.

The noise estimation simulation for all six graphs in fig. 5.18 was conducted using the SpecSens
simulation framework, running 5 iterations over 50 generations (250 total iterations) for every
data point in each of the six graphs. If not stated otherwise, the following parameters were used:
σ2w,dB = 10 (with 10 dB of uncertainty, σ2w,dB ∼ N (10, 10)), σ2s,dB = 1, N = 8192, L = 20. Five
narrowband signals (see fig. 4.1) occupied the wideband; resulting in 25% spectral occupancy. All
estimation results were compared to the actual noise power value using the relative error in dB.
The total simulation time for all six simulations was 1 hour and 26 minutes.

The blue curves in fig. 5.18 show the theoretically achievable estimation performance when using
an optimal noise estimator. Generally, no unbiased, real-world estimator achieves better estima-
tion performance in terms of the lowest possible mean squared error (MSE). The green curves
show the free-band noise estimator. The red and the purple lines represent the average noise
eigenvalue and histogram-based Marchenko–Pastur eigenvalue fitted noise estimate. Additionally,
two novel Marchenko–Pastur eigenvalue noise estimators are depicted: the yellow curves show a
kernel density estimator-based (KDE) Marchenko–Pastur eigenvalue noise estimator (using Gaus-
sian kernels), while the light-blue curves represent a maximum likelihood estimate (MLE) of the
Marchenko–Pastur distribution over the noise-only eigenvalues.

In fig. 5.18 (a) the length of the available data samples for noise estimation was varied using powers
of two: N = 2k, k = 9, . . . , 19. This resulted in data vector lengths of 512 to ≈ 52410× 103.
The graphs show: the longer the sample data vector, the better the noise estimate, regardless
of the estimation method used. While all methods performed very similarly on average, free-
band noise estimation consistently performed worst. In fig. 5.18 (b) the spectrum occupancy was
altered. Again, all eigenvalue-based noise estimators performed comparably; the estimation error
increased with increasing spectrum occupancy. When approaching occupancy values near 100%, the
estimation error rapidly increased. Until about 45% occupancy the free-band noise estimator was
able to “keep up” with the eigenvalue-based estimators. However, at around 45% occupancy, the
first signal appeared in its “free” subband, rendering it completely useless. Varying the SNR does
not seem to impact any noise estimator’s performance, except for the free-band noise estimator
(see fig. 5.18 (c)). With SNR values above 0 dB, its performance significantly degrades. This is
likely caused by an increasing signal power leakage into its “free” band, coming from neighboring
signal subbands. The remaining three graphs, fig. 5.18 (d) (e) (f), show the detection errors over
varying sample covariance matrix sizes under different spectrum occupancy values of 15%, 55%,
and 85%, respectively. Examining fig. 5.18 (d), one can conclude that the covariance matrix size
does not impact the noise estimator performance under low occupancy values. When increasing the
occupancy to 55%, small covariance matrix sizes L < 10 perform poorly (see fig. 5.18 (e)). The
performance difference between L = 10 and L = 50, however, is not noticeable. Even under high
spectrum occupancy (see fig. 5.18 (f)), no real benefit from using covariance matrix sizes of more
than L = 20 . . . 40 can be inferred.

The presented results provide the first quantitative comparison of noise estimation methods in the
context of wideband energy detection-based spectrum sensing. They suggest that the average noise
eigenvalue estimation method suffices for the majority of noise estimation applications. With the
exception of very small covariance sizes (below L = 10) under relatively high spectral occupancy, no
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Figure 5.18.: Comparison of noise estimation methods under varying parameters, such as
number of samples N (a), spectrum occupancy (b), SNR (c) and covariance
matrix size L (d) (e) (f).

real advantage justifying the extra step of eigenvalue distribution fitting to the Marchenko–Pastur
distribution could be found. In the particular case of small covariance sizes and high spectral oc-
cupancy, the MLE estimator emerged as the most promising noise estimation method. However,
since covariance matrix sizes of L = 10 . . . 20 can be realistically implemented and because spec-
tral occupancy values above 50% are very rarely encountered, average noise eigenvalue estimation
emerges as the premier noise estimation method for real-world applications in resource-constrained
environments, like SALSAT (CT-06).

63



x

Compute R̂x̃ Whiten Q−1 Eigenvalue
decomp.

MDL
criterion

Avg. noise
eigenvalues

Window FFT |·|2 Wavelet edge
detection

∑
k∈Bl

σ̂w

≷ λl
H0,l

H1,l
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5.6. Wideband Energy Detection with Eigenvalue Noise Estimation

This section will detail the simulation results of the final detector (see fig. 5.19), combining wideband
energy detection with average eigenvalue noise estimation to produce reliable detection results in
noise uncertain-environments. It employs the WED (and its statistics) from section 3.3.3 and
combines it with the noise estimation techniques presented in section 3.3.2 and section 5.5.3. Under
reasonable SNR, one can additionally use the wavelet edge detector to detect subbands dynamically;
otherwise, a prespecified number of uniform subbands must be selected. If the from filtering and
preprocessing introduced correlation leads to poor detection performance, one can employ the above
presented whitening techniques (see section 5.4.1).

For the in fig. 5.20 depicted simulation results, neither wavelet edge detection nor whitening was
used. The number of subbands was set to four (L = 4), generations = 200, iterations = 300 (to-
tal iterations = 60× 103), signal length = 0.001 024 s (rectangular window with N = 1024), avg.
SNRdB = −10 (σ2w,dB = 10 with 3 dB of uncertainty, σ2w,dB ∼ N (10, 3), and σ2s,dB = 0), PFA = 0.1.
The signal parameters were similar to the ones used in fig. 5.16. The average eigenvalue noise
estimator employed a L = 20 sample covariance matrix and a 10× estimation history buffer. This
resulted in the following parameters which were analytically computed before starting the simula-
tion: λ = 1.0811, PD = 0.9711. The simulation took 20.1 s and calculated the following numerical
values: PFA = 0.0934, PD = 0.9534. The results presented in fig. 5.20 show that the noise estimator
is able to accurately approximate the actual noise power levels, thus yielding good detection perfor-
mance. The wideband detector is able operate independently of noise power levels and without the
knowledge of signal-free subbands. The slightly better than expected sensing performance (in terms
of lower PFA) is likely caused by the more precise noise estimation of the eigenvalue noise estimator
when compared to the free-band estimator. The in section 3.3.3 depicted statistics were derived for
asymptotically Gaussian estimators (such as the free-band noise estimator). Through the covariance
matrix eigenvalue decomposition, the eigenvalue noise estimator is able to more effectively extract
the underlying noise power level and thus has a slightly different distribution and performance (see
section 5.5.3).

5.7. Summary

This chapter presented the implementation and simulation of the in chapter 3 introduced spec-
trum sensing methods by utilizing the novel simulation framework SpecSens. With the help of
MC simulations, it was shown that the proposed chi-square and CLT statics are generally able to
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Figure 5.20.: Wideband energy detection with noise estimation using the average noise
eigenvalues under 3 dB of noise uncertainty.

describe the ED’s operation. The concept of energy detection was subsequently applied to wide-
band detection and simulated. The WED’s performance could be accurately modeled with the help
of analytically derived equations, resulting in reliable detection of wideband and Doppler-shifted
signals. Windowing functions, with the exception of the rectangular window, resulted in very un-
predictable sensing behavior. This observation appears novel, as it is not yet detailed in spectrum
sensing-related literature. Wavelet edge detection was able to find spectral edges and subbands
dynamically. While it efficiently uses the sparsity in detection results, it is not applicable to low
SNR scenarios. In contrast to energy detection, eigenvalue detection does not rely on the precise
knowledge of background noise power levels. It can reliably detect weak signals, even in unknown
and changing noise environments. By employing novel whitening methods, undesirable correlations
caused by preprocessing and filtering could be removed.

In noise uncertain environments the WED’s performance deviates significantly from the analytically
derived metrics. With knowledge of noise-free subbands, free-band noise estimation mitigated the
impact of uncertain noise levels on the WED. Because of the shortcomings of free-band noise estima-
tion, simpler and more robust noise estimation techniques, relying on the eigenvalue decomposition
of the sample covariance matrix, were introduced. Simulations showed that no eigenvalue fitting to
the Marchenko–Pastur distribution is necessary; taking the average of the noise eigenvalues suffices
in most noise estimation scenarios. Finally, wideband energy detection was combined with average
eigenvalue noise estimation. Simulations showed that it produces reliable detection results, even in
noise uncertain environments.
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6. Conclusions and Future Work

6.1. Requirements Verification

The wideband energy detector presented in section 5.6 combines research results from recent litera-
ture with novel methods developed in this thesis to reliably (CT-03) produce detection results over
a wide range of frequencies simultaneously (MR-02). It can operate without any knowledge of the
signal trying to detect (MR-01). Through its eigenvalue noise estimation algorithm, the detector
is able to operate in environments with uncertain and changing noise power levels (CT-02). Us-
ing analytically derived performance metrics, desired operating characteristics can be dynamically
adjusted (MR-03). Under the constraint of blind sensing, the WED provides an excellent trade-
off between sensing performance in low SNR scenarios (CT-01) and implementation complexities
(CT-06), while at the same time requiring relatively few data samples to produce detection results
(CT-05). It operates using a single antenna (IR-02) and I/Q data stream (IR-01) without requiring
any external information (CT-07).

While the general performance and function of the WED could be verified, no target simulations
using real data were possible (see section 1.4 and section 1.3.1). Thus, the here presented verification
is based solely on simulated data samples, resulting in only preliminary requirement verification.

6.2. Future Work

As already indicated in chapter 1, the presented work is just a first step towards a fully functional
spectrum sensing implementation. It provides the necessary theoretical foundation on which further
simulations and tests (using real I/Q data) need to be conducted. Simulated data can by no means
replace thorough testing in real, complex, and heterogeneous spectral environments. To further
verify the in section 1.4 presented requirements, prerecorded data samples (coming from SALSAT)
could be injected into the SpecSens simulation framework and its MC simulation infrastructure. New
signal-sources, replaying the labeled I/Q data samples, could augment the existing signal generators.
Thanks to Python’s extensive signal processing support and SpecSens’s modular architecture, no
external tools or systems would be required.

Python is an interpreted programming language that is generally not well suited for embedded,
resource-constrained, and real-time environments. While some of its packages (e.g., NumPy) offer
very efficient precompiled functions, Python can, for the most part, not compete with compiled,
low-level programming languages, such as C or C++. They offer smaller memory footprints and
better embedded software tool support, making them far more suitable for platforms like SALSAT.
Thus, the next step would be to implement the presented algorithms in one of the mentioned lan-
guages. Ideally, one would employ specialized software packages (written in C/C++), which provide
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Req.-Number Addressed / Verified in Comment

MR-01 section 3.1.1, section 5.1 The detector is capable of detecting all signal
types.

MR-02 section 3.2.2, section 5.2 The detector is capable of detecting subband sig-
nals in wideband data.

MR-03 section 3.3.3 Through analytical equations, desired perfor-
mance metrics can be dynamically adjusted.

CT-01 section 5.6 The detector is capable of operating in low SNR
environments.

CT-02 section 3.3.2, section 5.6 Using eigenvalue noise estimation the detector is
capable of operating under unknown and varying
background noise.

CT-03 section 5.2, section 5.6 The detector is capable of reliably detecting sig-
nals in heterogeneous environments.

CT-04 section 3.2.2, section 5.2 The detectors complexity is relatively low, allow-
ing for high-speed operation.

CT-05 section 3.2.2, section 5.2 Detection latency is relatively low, reducing the
time between actual spectrum occupancy change
and detection.

CT-06 section 3.2.2, section 5.2 The detectors complexity is relatively low, allow-
ing for operation in resource constrained environ-
ments.

CT-07 section 3.3.3, section 5.6 The detector can operate without the need for
networking or cooperation.

IR-01 section 3.1.1 The detector and the noise estimator operate us-
ing only I/Q data.

IR-02 section 3.1.1, section 3.3.2 The detector and the noise estimator require a
single antenna for operation.

Table 6.1.: Verification of formal requirements defined in table 1.2.

high-performance signal processing functions (see appendix A). One can also utilize specialized vec-
tor instructions available on the respective target platform to increase computational performance
further. SALSAT, through its NXP i.MX 7 ARM processor (see 1.3.1) provides NEON SIMD vec-
tor instructions, running up to 1 GHz. These specialized instruction set extensions increase the
DSP processing capability of high-performance software while offering the low-power consumption
required by resource-constrained applications.

Recent advances in hardware accelerators, fueled by machine learning and neural network research,
lead to the resurrection of systolic arrays [124]. Systolic arrays expand the concept of vectorization
into two dimensions, enabling high-performance linear algebra computations, such as matrix multi-
plication or solving systems of linear equations. FPGAs can achieve superb processing performance
using systolic array architectures, even in real-time environments [125]. The FFT algorithm used
throughout this thesis is already implemented as a hardware-accelerator onboard SALSAT’s Intel
Cyclone IV FPGA (see section 1.3.1) [92]. Similar accelerators, using the above-mentioned systolic
array architecture, could be devised.
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Eigenvalue noise estimation, being a relatively computationally expensive algorithm, is an excellent
target for hardware acceleration. Its three main steps are the computation of the covariance matrix,
multiplication with a whitening matrix, and eigenvalue decomposition (see fig. 3.2). Computing the
covariance matrix requires the evaluation of many auto-correlations. Seminal work on the fast
computation of auto-correlations using hardware acceleration was conducted in [126, 127] and [128].
The general task of matrix multiplication, needed for whitening, is further detailed in [129]. Finally,
the eigenvalue decomposition of a square matrix can be generalized to any arbitrary matrix with
singular value decomposition (SVD) [86, 100]. SVD implementations for FPGAs are investigated in
[130], with some work on related decompositions presented in [131].

6.3. Conclusions

This work introduced a novel spectrum sensing method that combines wideband energy detection
with eigenvalue-based noise estimation. Its properties make it a prime candidate for spectrum
sensing on small and resource constraint satellites, such as SALSAT. It is able to operate in het-
erogeneous and complex environments. Even under low signal-to-noise ratios, the algorithm can
reliably detect subband signals in wideband data and report on the underlying radio spectrum’s
occupancy.

SpecSens, a new simulation framework for spectrum sensing methods, was presented. Thanks to
its modular design and its tight integration with the Python programming language, SpecSens
lends itself to rapid algorithm prototyping and development. Through the parallel Monte Carlo
simulation infrastructure, SpecSens can efficiently run simulations, giving quick and direct feedback
to algorithm designers.

Because the presented work relies solely on simulated data it can only be seen as a preliminary
step towards a functional implementation. While simulating data simplifies and streamlines algo-
rithm development, it does not replace simulations using real data. More work on verification using
RF samples from space is necessary. Additionally, all simulated algorithms were implemented in
Python, making them not applicable to embedded and real-time operation. They need to be trans-
lated to high-performance and low-latency implementations, possibly using support from specialized
hardware accelerators.

68



A. Mathematical Background

A.1. Probability Distributions

Performance evaluation of signal detection algorithms requires the ability to determine the proba-
bility distributions of the data samples and the subsequent test-statistic. Wherever possible, they
are modeled using standard probability density functions. This section provides the definitions of
the most relevant distributions used throughout this thesis.

A.1.1. Gaussian

The real Gaussian probability density function (PDF) for a scalar random variable x ∈ R is defined
as [132]

p(x) =
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
, (A.1)

where E[x] = µ ∈ R is called the mean and Var[x] = σ2 ∈ R the variance of x. As Gaussian distri-
butions are very prevalent, a shorthand notation exists x ∼ N

(
µ, σ2

)
; where ∼ means distributed

as. Its cumulative distribution function (CDF) is denoted by

Φ(x) =

∫ x

−∞
p(t)dt =

∫ x

−∞

1√
2πσ2

exp

(
− 1

2σ2
(t− µ)2

)
dt. (A.2)

Because no closed-form expression for the Gaussian CDF exists, one needs to resort to tables or
numerical solutions. The complementary cumulative distribution function (CCDF), also known as
the Q-function, describes the right-tail probability and is defined as

Q(x) = 1− Φ(x) =

∫ ∞

x

1√
2πσ2

exp

(
− 1

2σ2
(t− µ)2

)
. (A.3)

To express distributions over many data samples, it is necessary to introduce the real multivariate
Gaussian probability density function. For a random vector x ∈ R

N with x ∼ N (µ,C) it is
characterized by [60]

p(x) =
1√

(2π)N det(C)
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
, (A.4)

where µ = E[x] ∈ R
N is the mean vector and C ∈ R

N×N is the covariance matrix, which is defined

as C = E
[
(x− µ)(x− µ)T

]
. Since this thesis makes use of complex signals, it is necessary to review

the complex multivariate Gaussian distribution. The complex sample vector x ∈ C
N can be thought
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Figure A.1.: PDF of a Gaussian distribution for x ∼ N (0, 1).
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Figure A.2.: CDF and CCDF of a Gaussian distribution for x ∼ N (0, 1).

of as a composition of two real sample vectors, where x = xr + ixi. The complex mean vector is
defined as µ = E[x] ∈ C

N ; the complex covariance matrix C ∈ C
N×N is C = E

[
(x− µ)(x− µ)H

]
1.

Thus, the PDF becomes

p(x) =
1

πN det(C)
exp

(
−(x− µ)HC−1(x− µ)

)
, (A.5)

which can also be written as x ∼ CN (µ,C) [60]. Of particular interest to signal processing appli-
cations is the so-called zero-mean circularly symmetric complex Gaussian distribution, denoted as
x ∼ CN (0, σ2I) and where σ2 is the variance of the signal x.

A.1.2. Chi-Square

A chi-square PDF with N ∈ N
+ degrees of freedom is defined as

χ2
N (x) =





1

2
N
2 Γ(N

2
)
x

N
2
−1 exp(−1

2x) x > 0

0 x < 0
(A.6)

1
A

H = (AT)∗ denotes the conjugate transpose for some complex matrix A.
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for x ∈ R [60]. The Gamma function Γ(·) is defined as

Γ(x) =

∫ ∞

0
tx−1 exp(−t)dt (A.7)

with Re(x) > 0 ∈ R. If x ∈ N, it can be expressed using the factorial

Γ(x) = (x− 1)!. (A.8)

The chi-square distribution with N degrees of freedom arises as the sum of N squared independent
and identically distributed (IID) random Gaussian variables. That is: if y ∼ N (0, I), then

N∑

n=0

y2n ∼ χ2
N . (A.9)
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The CDF Fχ2
N
(·) of the chi-square distribution is defined as

Fχ2
N
(x) =

∫ x

−∞
χ2
N (t)dt =

γ(N2 ,
x
2 )

Γ(N2 )
, (A.10)

where Γ(·, ·) is the upper incomplete Gamma function [60]

Γ(s, x) =

∫ ∞

x
ts−1 exp(−t)dt. (A.11)

The lower incomplete Gamma γ(·, ·) function is defined as

γ(s, x) =

∫ x

0
ts−1 exp(−t)dt. (A.12)

The three gamma functions relate to one another as follows

Γ(s) = γ(s, x) + Γ(s, x), (A.13)

with x > 0. When z ∼ CN (0, I) is a complex Gaussian random vector of length N , then the
resulting chi-square distribution has 2N degrees of freedom

N∑

n=0

|zn|2 ∼ χ2
2N . (A.14)

A.1.3. Tracy-Widom

The Tracy–Widom distribution describes the limiting cumulative probability distribution (CDF) of
the normalized largest eigenvalue of a random Hermitian2 matrix [61]. For β = 1 (which is the only
relevant β to this thesis), it is defined as

F1(t) = exp

(
−1

2

∫ ∞

t
(q(u) + (u− t)q2(u))du

)
, (A.15)

where q(u) arises as the solution to the nonlinear Painleve equation of type II

q′′ = uq(u) + 2q3(u). (A.16)

Because it is generally challenging to evaluate, and neither SciPy nor NumPy includes it, this thesis
made use of the TracyWidom Python package [114], which in turn uses the interpolation tables
from [133] and the asymptotics in [134].

A.1.4. Marchenko–Pastur

The Marchenko–Pastur distribution describes the asymptotic behavior of singular values of large
rectangular random matrices [107]. Its probability density function is defined as

dFW (ν) =

√
(ν − σ2z(1−

√
c)2)(σ2z(1 +

√
c)2 − ν)

2πσ2zνc
dν, (A.17)

2A Hermitian matrix A is a complex square matrix that is equal to its conjugate transpose. That is A = A
H.
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Figure A.5.: Multiple Marchenko–Pastur PDFs under different c.

where

σ2z(1−
√
c)2 ≤ ν ≤ σ2z(1 +

√
c)2 (A.18)

for a Gaussian matrix of size N × L; with N,L → ∞ and c = L/N [103, 104]. As no available
Python implementation exists, a custom implementation was added to SpecSens.

A.2. Neyman-Pearson Theorem

This section formulates the proof of the Neyman-Pearson theorem using the method of Lagrange
multipliers and is based on a slightly modified version of the proof presented in [60]. Considering
an observation vector x in observation space R the two possible hypotheses are H0 and H1. Using
Lagrange multipliers, one can maximize the probability of detection PD for a given fixed probability
of false alarm PFA = α. Forming the Lagrangian

L = PD − λ(PFA − α)

=

∫

R1

p(x | H1)dx− λ
(∫

R1

p(x | H0)dx− α
)

=

∫

R1

(
p(x | H1)− λp(x | H0)

)
dx+ λα. (A.19)

To maximize L, one includes any x in R1 for which the integrand is positive. Then R1 is given as

R1 =
{
x ∈ R | p(x | H1) > λp(x | H0)

}
(A.20)

and one thus decides H1 when

p(x | H1)

p(x | H0)
> λ (A.21)

which directly yields the likelihood-ratio test (LRT)

Λ(x) =
p(x | H1)

p(x | H0)

H1

≷
H0

λ. (A.22)
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It is now possible to determine the threshold λ with

PFA =

∫

{x:Λ(x)>λ}
p(x | H0)dx =

∫ ∞

λ
p(Λ(x) | H0)dΛ = α. (A.23)

A.3. Spectral Estimation

The goal of spectral estimation (or spectral density estimation) is to estimate the spectral density
of a signal from a sequence of samples. The spectral density characterizes the frequency content of
the signal (over time) [135]. The following section is mostly based on [64, 85, 86, 136].

A.3.1. Fourier Series

The Fourier series in engineering contexts is a method to decompose a periodic signal into its
frequency components. It is intimately related to the geometry of infinite-dimensional function
spaces, also known as Hilbert spaces. Hilbert spaces generalize the notion of vector spaces to
functions with infinitely many dimensions [64, 86]. The inner product in Euclidean vector spaces
for two vectors a,b ∈ R

N is defined as

a · b = 〈a,b〉 =
N∑

i=1

aibi = a1b1 + a2b2 + . . .+ aNbN . (A.24)

The notion of inner products can be extended to functions. With complex functions x(t) and y(t)
defined on domain t ∈ L [64, 136]

〈x(t), y(t)〉 =
∫

L
x(t)y∗(t)dt. (A.25)

Just as in Euclidean vector spaces, the inner product in function spaces may be used to project a
function into a new coordinate system. Instead of projecting a vector into orthogonal basis vectors,
the function is projected into an orthogonal basis of functions spanning the function space [86]. In
the case of infinite-dimensional function spaces, the basis one is projecting into is infinite. This
observation directly results in the Fourier series for complex T-periodic functions on [0, T )

x(t) =
∞∑

k=−∞

ck · ei
2πkt
T

=

∞∑

k=−∞

(αk + iβk)(cos(
2πkt

T
) + i sin(

2πkt

T
)), (A.26)

where ck = αk + iβk and eiγ = cos(γ) + i sin(γ). Here, the function x is the sum of orthogonal sine
and cosine functions. The complex coefficients ck can be found by applying the above mentioned
inner product with the basis function yk(t) = ei

2πkt
T

ck =
1

T
〈x(t), ei 2πkt

T 〉 = 1

T

∫

T
x(t) · e−i 2πkt

T dt. (A.27)
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A.3.2. Fourier Transform

The Fourier series is defined only for periodic functions. To also study non-period functions, the
Fourier transform is introduced. It is an extension of the Fourier series that results when the period
of the function is allowed to approach infinity [64, 136]. The Fourier transform integral is essentially
the limit of a Fourier series as the domain’s length goes to infinity [64, 86]. Letting T → ∞ and
defining ω0 =

2π
T yields

x(t) = lim
T→∞

∞∑

k=−∞

cke
i 2πkt

T

= lim
T→∞

∞∑

k=−∞

(
1

T

∫

T
x(t) · e−i 2πkt

T dt

)
ei

2πkt
T

= lim
w0→0

∞∑

k=−∞

ω0

2π



∫ π

ω0

− π
ω0

x(t) · e−ikω0tdt


 eikω0x

= lim
w0→0

1

2π

∞∑

k=−∞

x̂ · eikω0tω0. (A.28)

The discrete product kω0 becomes a continuous frequency variable kω0 → ω, and the summation
becomes a Riemann integral. This results in

x(t) = F−1{x̂(ω)}(t) = 1

2π

∫ ∞

−∞
x̂(ω)eiωtdω (A.29)

x̂(ω) = F{x(t)}(ω) =
∫ ∞

−∞
x(t)e−iωtdt, (A.30)

where F(·) and F−1(·) are the Fourier transform and inverse Fourier transform, respectively. Both
functions converge as long as

∫∞
−∞ |x(t)|dt < ∞ and

∫∞
−∞ |x̂(ω)|dω < ∞ [64, 86]. In engineering

terms, this is equivalent to saying that the energy of the function (or the signal) needs to be finite.
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Parsevals theorem states that the energy of signals is preserved up to a constant when applying the
Fourier transform [64, 136]

∫ ∞

−∞
|x(t)|2dt = 1

2π

∫ ∞

−∞
|x̂(ω)|2dω, (A.31)

which is an important property when dealing with energy detectors in the frequency domain, e.g.,
wideband energy detection (see section 3.2.2).

The power spectral density (PSD) S(f) of x(t), with ω = 2πf , describes the power distribution
over the frequency and can be estimated by taking the square of the absolute value of the Fourier
transform

Sx(f) = |x̂(f)|2. (A.32)

The PSD can also be expressed in terms of the Fourier transform of the autocorrelation function

Rxx(τ) = E[x(t)∗x(t− τ)] (A.33)

Sx(f) =

∫ ∞

−∞
Rxx(τ)e

−i2πfτdt = R̂xx(f), (A.34)

where x is assumed to be wide-sense stationary (WSS); this relation is known as the
Wiener–Khinchin theorem [136].

A.3.3. Discrete Fourier Transform

The discrete Fourier transform (DFT) is a discretized version of the Fourier transform, which
operates on vectors of data x = [x1, x2, . . . , xN ]

T that are obtained by sampling continuous functions
(or signals) [86].

Closely related and of paramount importance to signal discretization is the so-called Nyquist–Shannon
sampling theorem. It states that any signal sampled at frequency fs must contain no sinusoidal
component at exactly or above half the sample frequency fs. Strictly speaking, any signal with
bandwidth B has to be sampled at fs > 2B, where the threshold 2B is called Nyquist rate [136].

One can transform N discrete samples of function x from the time domain to an N -point discrete
spectral representation with the DFT, defined as

x̂k =
N∑

j=1

xje
−i 2πjk

N . (A.35)

where k is a variable of discrete frequency. Its inverse, the iDFT, is given by

xn =
1

N

N∑

j=1

x̂je
i 2πjn

N . (A.36)
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Comparing these transforms to the above presented inner products of vectors shows that the DFT
is a linear transformation that maps the data points of x (time-domain) to x̂ (frequency-domain).
Thus, this transformation can be computed by matrix multiplication [86]




x̂1
x̂2
x̂3
...
x̂N



=




1 1 1 · · · 1

1 ωN ω2
N · · · ωN−1

N

1 ω2
N ω4

N · · · ω
2(N−1)
N

...
...

...
. . .

...

1 ωN−1
N ω

2(N−1)
N · · · ω

(N−1)2

N







x1
x2
x3
...
xN




(A.37)

with the DFT matrix of size N ×N , where ωN = e
−2πi
N .

The discrete version of Parseval’s theorem, which states that the total signal energy is preserved by
the DFT, is

N∑

n=1

|xn|2 =
1

N

N∑

k=1

|x̂k|2. (A.38)

The discrete PSD is defined as

Sx,k =
1

N
|x̂k|2, (A.39)

where, depending on the context, 1/N is sometimes left out.

A.3.4. Fast Fourier Transform

Multiplying by the DFT matrix involves O(N2) operations, making it too slow to be practically
applicable. This is where the fast Fourier transform (FFT) comes in [138]. Popularized by J. W.
Cooley and John Tukey, it scales with O(N logN), enabling it to be used in many real-time applica-
tions [100]. The fundamental idea of the FFT is to subdivide the large DFT matrix recursively into
smaller matrices. This can be done most efficiently if N is a power of 2, which yields the so-called
radix-2 algorithm. The even and odd entries of the N -long input get split into two smaller N/2-long
DFTs

x̂k =
N∑

j=1

xje
−i 2πjk

N

=

N/2∑

j=1

x2je
−i 2π2jk

N +

N/2∑

j=1

x2j+1e
−i

2π(2j+1)k
N

=

N/2∑

j=1

x2je
−i 2πjk

N/2

︸ ︷︷ ︸
N/2 DFT

+ e−i
2πk
N︸ ︷︷ ︸

ωn
N

N/2∑

j=1

x2j+1e
−i 2πjk

N/2

︸ ︷︷ ︸
N/2 DFT

(A.40)

which for N = 8 can be visualized at the highest recursion level as seen in fig. A.7.
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Figure A.7.: 8-point Radix-2 FFT high-level signal flow.

Repeating this process recursively for any input size down to N = 2, computing all DFTs on
the way down, and then bringing the results back together yields the improved run-time FFT. It
is important to remember that the FFT and the DFT return the same result; the FFT simply
improves the computational complexity for large N .

The FFT is implemented in various software packages. The most relevant implementations are the
FFTPACK implementation, written in FORTRAN [139], which is used by NumPy [111] and SciPy
[112]. There also exists the FFTW implementation, which is written in C [140]. The FFTW
uses advanced heuristics to achieve superb performance, making it faster than the FFTPACK
implementation. However, it uses a more strict GPL license and is therefore not used by NumPy
or SciPy. Python bindings for the FFTW are nonetheless available through pyFFTW [141].

Using hardware implementations makes the FFT even more efficient. In the context of SALSAT,
Alexander Maaß has already implemented an Intel FFT IP-Core on the Cyclone IV FPGA [92].
Therefore, the details of FFT FPGA implementations will not be presented here.

A.3.5. Short-Time Fourier Transform

While the Fourier Transform provides detailed information on the frequency content of a given
signal, it does not yield any information about when in time those frequencies occur. Thus, is
it only able to characterize truly periodic and stationary signals. However, for signals with non-
stationary frequency content, it is important to simultaneously characterize the frequency and its
evolution over time [86].

The short-time Fourier transform (STFT) computes windowed DFTs using a moving window g(t).
This results in a series of single DFTs, each having the length of the window function. The STFT
provides localization in both the temporal domain, as well as in the frequency domain. It assumes
that the signal is stationary during the application of the window function to each chunk of the
signal, a property called quasi-stationary. While this assumption does generally not hold, it results
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Figure A.8.: Illustration of the STFT with rectangular sliding window.

in sufficiently good spectral estimation results. The continuous STFT pair can be written as

x̂(ω, t) =

∫ ∞

−∞
x(τ)e−iωτg∗(τ − t)dτ (A.41)

x(t) =
1

2π‖g‖2
∫ ∞

−∞

∫ ∞

−∞
x̂(ω, τ)eiωtg(τ − t)dωdτ, (A.42)

where ‖g‖2 is the energy of the window function [64, 136]. While the summation, as stated above,
goes from −∞ to ∞, the finite window reduces the summation range to the window size. It is
important to note that the STFT x̂(ω, t) now has a frequency ω and a time t variable.

The discrete counterpart of the STFT is defined as

x̂m,k =

m+L/2∑

n=m−L/2

xn+mL e
−i 2πkn

L gn (A.43)

with discrete window function gn of even size L, so that k ∈ [−L/2, L/2] becomes the discrete-
frequency variable and m ∈ [0, ⌊N/L− 1⌋] the discrete-time variable with which one selects the
DFT-bin of interest [64]. Thus, for an N entry discrete sample vector x, one has ⌊N/L⌋ DFT-
bins.

The simplest window function is the rectangular window. It is equivalent to replacing all but L
values of the data samples in x by zeros, making it appear as though the signal suddenly turns on
and off [135]. It is an example of a window with high-frequency resolution but low dynamic range.
Of particular interest to this thesis (next to the rectangular window) are the Hann window and
the flattop window. Both present a compromise between dynamic range and resolution. While the
Hann window is versatile and well suited for general application, the flattop window is well suited
for PSD estimation, as it has a better amplitude accuracy in the frequency domain compared to
the Hann window [142]. The board topic of window functions would go beyond the scope of this
thesis. For more information about window functions, in conjunction with the important topic of
spectral leakage, consult [92, 135, 142, 143].

An important tuning factor is the size of the window function; and likewise the length of DFT.
One cannot simultaneously localize a signal x in both the time domain and frequency domain. The
shorter the DFT, the finer the time resolution. At the same time, the frequency resolution decreases.
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Figure A.9.: Flattop and Hann window with size n = 50.

When increasing the DFT length, the time resolution decreases, and the frequency resolution in-
creases. This observation leads to the fundamental uncertainty principle of time-frequency analysis
that limits the ability to simultaneously attain high resolution on both the time and frequency
domains. Stated mathematically: for the continuous function x(t), the time-frequency uncertainty
principle can be written as

(∫ ∞

−∞
t2|x(t)|2dt

)(∫ ∞

−∞
ω2|x̂(ω)|2dω

)
≥ 1

16π2
. (A.44)

if both tx(t) and x′(t) are square integrable [86].

The spectrogram (or sometimes called waterfall plot) is a two-dimensional representation of the
squared magnitude of the STFT. It is essentially a series of PSD absolute values indexed by time.
The discrete spectrogram is defined as

Sm,k = |x̂m,k|2 (A.45)

with m as the discrete-time variable and k as the index of discrete frequency. A typical format is
a two-dimensional graph; one axis represents time, and the other axis represents frequency. The
amplitude of a specific frequency at a given time is expressed by the strength or color of each point
in the graph (see fig. A.10 and appendix C for examples) [144].

A.3.6. Wavelet Transform

Wavelets (or wavelet transforms) extend the concept of Fourier analysis to more general orthogonal
basis functions and partially overcome the uncertainty principle discussed above by leveraging multi-
resolution decomposition [64, 85, 86, 96, 145]. This multiresolution approach allows for distinct time
and frequency fidelities in different frequency bands. Starting with the mother wavelet ψ(τ), a family
of scaled and translated wavelet functions is formed [86]

ψa,t(τ) =
1√
a
ψ

(
τ − t
a

)
. (A.46)
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Figure A.10.: Spectrogram over 10s of a quadratic chirp signal from 400Hz to
4000Hz.

The parameters a and t are responsible for scaling and translating the wavelet ψ(t) [86]. A key
advantage over Fourier transforms is the adaptive temporal and frequency resolution: wavelets
capture both time and frequency information, just as the STFT does, but with varying resolution.
In low-frequency regimes, the wavelet transform (WT) provides good frequency resolution, and in
high-frequency regimes, as frequency resolution gets less important, it provides good time resolution.
This phenomenon is visualized in fig. A.11. The WT

Wψ{x}(a, t) = 〈x, ψa,t〉 =
∫ ∞

−∞
x(τ)ψ∗

a,t(τ)dτ

=
1√
a

∫ ∞

−∞
x(τ)ψ∗

(
τ − t
a

)
dτ (A.47)

can, analogous to the Fourier transform, be thought of as a projection into the orthogonal wavelet
basis of scaled wavelets all derived from the same mother wavelet ψ(τ) [64, 86].

Two important wavelet types are the Gaussian derivative and Mexican hat wavelets (fig. A.12),
which are extensively used in edge detection applications. The equation for the Gaussian wavelet
family are [113]

ψ = e−n
2

ψ′(n) = −2ne−n2

ψ′′(n) = (4n2 − 2)e−n
2
. (A.48)

When working with digital data, it is necessary to discretize the WT. The scaling is usually chosen
to be dyadic, i.e., powers of two: ak = 2k. With m as the time variable, the discrete wavelet family
then is

ψm,k(τ) =
1√
2k
ψ(
τ −m
2k

), (A.49)
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ysis [86].

where the scaling factor is often chosen without the square-root so that the discrete wavelet transform
(DWT) is given by

Wm,k{x} = 〈x, ψm,k〉 =
∫ ∞

−∞
x(τ)ψ∗

m,k(τ)dτ

=
1

2k

∫ ∞

−∞
x(τ)ψ∗(

τ −m
2k

)dτ. (A.50)

The discrete wavelet and the DWT can also be expressed in a more compact form with the help of
the convolution operator, which has to be interpreted carefully to avoid confusion

ψs(t) =
1

s
ψ

(
t

s

)
(A.51)

Ws(t) = x(t) ∗ ψs(t) =
1

s

∫ ∞

−∞
x(τ)ψ∗(

τ − t
s

)dτ, (A.52)

where s = 2m,m = 1, 2, . . . ,M is called dilation factor [98]. This is the notation used in spectrum
sensing literature and thus will also be used in this thesis.

The DWT has a similarly fast implementation as the FFT, called the fast wavelet transform (FWT).
It uses cascading high-pass h(n) and low-pass g(n) filter pairs, known as quadrature mirror filters.
After each filter level, the filter results are down-sampled by a factor of 2. The down-sampled
results of the high-pass filter represent the coefficients for that level, while the down-sampled low-
pass filter results are used for the next level. These filters are commonly implemented using perfect
reconstruction filter banks. The topic of filter banks and quadrature mirror filters would go beyond
the scope of this quick summary. For more information, see [145, 146].
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Figure A.12.: Real Gaussian derivative and mexican hat wavelets.

Because SciPy does not support wavelets well, the PyWavelets package was chosen for this work.
It provides a wide range of WTs, as well as decent documentation [113]. As is common in the
area of wavelet application, the terms continuous wavelet transform and discrete wavelet transform
are used somewhat inconsistently. The DWT is often called CWT, and the DWT is then used to
describe a different type of WT where some number of samples are skipped. It is important to note
that both the CWT and DWT become point-by-point digital transformations in this case. However,
for this thesis, the special DWT is not relevant. To stay consistent with the available literature on
wavelet-based spectrum sensing, the DWT presented above will nonetheless be called CWT in this
thesis.

An important application of WTs is in singularity or edge detection. Because the WT characterizes
the local regularity of signals by decomposing them into elementary building blocks that are well
localized, one can use it to detect gradient changes even on very noisy data samples. The effect of
noise can be reduced by adjusting the scale of the wavelet: wavelets of large scales are more effective
at removing noise components, but at the same time increase the uncertainty of the location of edges,
while wavelets of small scales preserve the exact location of edges but cannot distinguish between
noise and actual edges [147]. The wavelet of particular interest to edge detection in this thesis is the
Gaussian derivative wavelet (see fig. A.12). It is important to note that the WT, when performing
edge detection, is not necessarily operating on time-domain signals. Instead, it can be applied to
all types of data or signals; in this thesis it will be applied to the PSD.
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B. More Sensing Algorithms

B.1. Narrowband

B.1.1. Matched Filter Detection

When the signal trying to detect is (partially) known, one can use the matched filter detector
(sometimes also known as coherent detector or replica correlator) [44, 60, 65]. It is the optimal linear
detector for detecting a known signal in the presence of Gaussian noise and works by correlating
the known signal with the incoming measurement samples. Prime application examples are radar
and sonar, since the signal to detect is known: the signal is sent out, reflected by some object,
and received as an attenuated, phase-shifted, and noise polluted version of the signal transmitted
moments before.

Detector

As the signal s = [s1, . . . , sN ]
T ∈ C

N is assumed known and received together with additive CWGN
(see chapter 2), the two PDFs under both hypothesis are

p(x | H0) =
1

πNσ2Nw
exp

(
− 1

σ2w
xHx

)
(B.1)

p(x | H1) =
1

πNσ2Nw
exp

(
− 1

σ2w
(x− s)H (x− s)

)
. (B.2)

The PDF under H0 is simply the complex multivariate Gaussian distribution of the noise x ∼
CN (0, σ2wI). Under H1 this distribution is shifted by the received signal s, so that x ∼ CN (s, σ2wI).
Using these PDFs it is possible to construct the detector based on the LRT [60]

Λ(x) =
p(x | H1)

p(x | H0)

H1

≷
H0

λ

=

1
πNσ2N

w
exp

(
− 1
σ2
w
(x− s)H (x− s)

)

1
πNσ2N

w
exp

(
− 1
σ2
w
xHx

) (B.3)
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Figure B.1.: Simple exemplary signal s = [0, 1,−1, 0, 1, 0, 0,−1,−1, 0,−1,−1, 0, 0, 1, 0]T
sampled over N = 128 data points.

and after utilizing the the natural logarithms monotonic property to simplify, one has

ln
(
Λ (x)

)
= ln




1
πNσ2N

w
exp

(
− 1
σ2
w
(x− s)H (x− s)

)

1
πNσ2N

w
exp

(
− 1
σ2
w
xHx

)




= − 1

σ2w

(
(x− s)H (x− s)− xHx

)

= − 1

σ2w

(
−xHs− sHx+ sHs

)

=
1

σ2w

(
2Re

(
sHx

)
− sHs

)
, (B.4)

because xHs+ sHx = (sHx)∗ + sHx = 2Re(sHx) [60]. Since s and σ2w are assumed known, one can
move the corresponding known parts into a new threshold λ′

T (x) = Re
(
sHx

)H1

≷
H0

λ′, (B.5)

which yields the final test statistic T(x) [26, 30, 60]. This can also be written as

T (x) = Re




N∑

n=1

xns
∗
n


H1

≷
H0

λ′. (B.6)

Shifting the known signal s through the data stream while constantly multiplying and summing
leads to the resulting scalar value being largest when the received data stream x most closely
matches the known signal s. This can also be thought of as an optimal filter, tuned to only let the
known signal pass through; hence the name: matched filter.

Example

To better understand the operation of the matched filter, it is beneficial to briefly visit a simple
example. Assuming one is trying to detect the simplified signal from fig. B.1 in a set of noise
observations. Constructing a sequence in which the signal will only be present at certain times
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Figure B.2.: (b) contains the known signal from fig. B.1 according to the signal status in
(a). Introducing noise in (c) makes it impossible to see whether the signal is
present or not with the naked eye. After matched filtering and thresholding,
the signal status is nonetheless fully recovered (d) (derived from [112]).

according to fig. B.2 (a) results in fig. B.2 (b). 0 indicates that the signal is not present, while 1
indicates the signal is present. After adding WGN it is not possible to make out whether the signal
is present or not in fig. B.2 (c). The SNR is about −6 dB in this example. By choosing an arbitrary
threshold λ′ = 0.3 and applying the matched filter, one can clearly identify whether the signal is
present or not (fig. B.2 (d)).

Limitations

While the matched filter achieves superb performance even in very low SNR, it is not applicable
to the problem of spectrum sensing onboard SALSAT. According to MR-01 the detector needs to
be blind; the signals trying to detect are not known, thus ruling out the matched filter. Even if
all signals were to be known, it would not be practically feasible to implement a matched detector
for every signal trying to detect. Therefore, it is necessary to generalize the detector from known
deterministic signals to stochastic signal models (see ED in section 3.1.1).
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B.1.2. Covariance Detection

When the signals covariance matrix Cs is known, one can use the so-called covariance detector to
detect its presence in CWGN. The detector can handle noise uncertainties and improve low SNR
performance.

Detector

The following detector is going to be derived in accordance with [60]. It will be assumed that s is
a zero-mean, Gaussian random signal with known covariance matrix Cs; that is s ∼ CN (0,Cs).
In contrast to the model used by the eigenvalue detector (see section 3.1.2), this detector will
deliberately use known features from the covariance matrix. The noise is assumed to be uncorrelated
w ∼ CN

(
0, σ2w

)
. This results in the following signal model (see section 2.2)

H0 : x ∼ CN (0, σw) (B.7)

H1 : x ∼ CN (0,Cs + σw) . (B.8)

As has been done before, the LRT will be used to construct the test (see section 2.3) [60]

Λ (x) =
p
(
x | H1

)

p
(
x | H0

)

=

1
πN det(Cs+σ2

wI)
exp

(
− (x− µ)H

(
Cs + σ2wI

)−1
(x− µ)

)

1
πN det(σ2

wI)
exp

(
− (x− µ)H

(
σ2wI

)−1
(x− µ)

)

µ=0
=

1
πN det(Cs+σ2

wI)
exp

(
−xH

(
Cs + σ2wI

)−1
x
)

1
πNσ2N

w
exp

(
− 1
σ2
w
xHx

) . (B.9)

Using the logarithm, one can simplify

ln
(
Λ (x)

)
= − ln

(
σ2Nw

det
(
Cs + σ2wI

)
)
xH

((
Cs + σ2wI

)−1
− 1

σ2w
I

)
x. (B.10)

Dividing by the logarithm term on the left and multiplying by σ2w one only retains the data-
dependent terms [60]

T (x) = xH

(
I− σ2w

(
Cs + σ2wI

)−1
)
x.
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Using a slightly simplified version of the Woodbury matrix identity, which states that (A+ B)−1 =

A−1 −A−1
(
B−1 +A−1

)−1
A−1, one can rearrange the equation into a more elegant form

with
(
Cs + σ2wI

)−1
=

1

σ2w
I− 1

σ4w

(
1

σ2wI
+C−1

s

)−1

T (x) = xH


I− σ2w

(
1

σ2w
I− 1

σ4w

(
1

σ2wI
+C−1

s

)−1
)
x

= xH

(
1

σ2w

(
1

σ2w
I+C−1

s

)−1
)
x

= xH

(
1

σ2w

(
1

σ2w

(
Cs + σ2wI

)
C−1
s

)−1
)
x (B.11)

which yields the final detector [60]

T (x) = xHCs

(
Cs + σ2I

)−1
x

H1

≷
H0

λ. (B.12)

This detector can be thought of taking the incoming signal x and correlating it with itself, while
weighing the relevant parts of the known covariance matrix Cs respectively.

Limitations

According to MR-01, the detector needs to be blind. The covariance detctor however assumes
knowledge of the covariance matrix Cs. It is thus not applicable to SALSAT.

B.1.3. Cyclostationary Detection

If the signal s is not entirely known, but some of its features are, one may take advantage of this
knowledge to form a test statistic closely matched to the signal. A feature capable of distinguishing
a modulated signal from noise is obtained by observing that, generally, modulated signals are not
stationary, meaning that they have statistical properties that vary cyclically with time [26]. This
property is called cyclostationarity and allows these types of signals to be modeled as cyclostationary
random processes. This is in contrast to noise w, which is assumed to be a stationary random
processes. Most man-made signals show periodic patterns related to symbol rate, channel code,
cyclic prefix, etc., that introduce cyclostationarity. Thus, cyclostationary signal detection consists
of analyzing the cyclic autocorrelation function of the received signal, which is periodic for data
signals but non-periodic for noise [31].

Detector

A discrete-time zero-mean (E[x] = 0) stochastic signal x = [x1, . . . , xN ]
T ∈ C

N is said to be
wide-sense cyclostationary with period T0 if its autocorrelation function

Rx(n, τ) = E[x∗nxn−τ ] (B.13)
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is cyclic in n with period T0

Rx(n, τ) = Rx(n+ T0, τ). (B.14)

The autocorrelation function can consequently be expanded as a Fourier series (see appendix A.3.1)
[26]

Rx(n, τ) =
∑

α

Rαx(τ)e
i2παn (B.15)

with Fourier coefficients Rαx(τ), also known as the cyclic autocorrelation function, defined by

Rαx(τ) =

T0−1∑

n=0

Rx(n, τ)e
−i2παn (B.16)

and where α = k/T0, k ∈ Z are called cyclic frequencies. The Fourier coefficients, interpreted as a
function of τ , form the cyclic autocorrelation function (CAF) of xn. The signal is thus said to be
cyclostationary, if there exists an α 6= 0 such that Rαx(τ) > 0 [31]. The cyclic spectral density (CSD)
Sαx of xn is defined as the discrete Fourier transform of Rαx(τ)

Sαx(f) =
∑

τ

Rαx(τ)e
−i2πfτ . (B.17)

Knowing T0, or some other cyclic characteristics of signal xn, one can use the CAF to detect the
signal by evaluating Rαx(τ) at T0. Equivalently, the CSD has peaks at cyclic frequencies that are
multiples of 1/T0 [26, 31].

Limitations

Cyclostationary signal detection is generally dependent on the assumption that the period T0 of xn
is known a priori [26]. If this assumption is not valid, as is the case with SALSAT (MR-01), then
cyclostationary detection requires the search for cyclic frequencies. This has been implemented for
a subspace of all possible cyclic frequencies in [52]; more specifically, the authors chose α ∈ [−fs, fs]
and f ∈ [−fs/2, fs/2] for Sαx(f). The resulting search leads to increased complexity and longer
processing times. The authors reported 2 ∼ 3 orders of magnitude increase compared to the
eigenvalue detector, and 4 ∼ 5 orders of magnitude increase compared to the ED; with similar
or slightly worse detection performance in unknown noise environments as the eigenvalue detector.
This makes the cyclostationary detector not viable as a blind spectrum sensing method for SALSAT
(CT-06).

B.2. Wideband

B.2.1. Compressed Sensing

The primary motivation behind compressed sensing (CS) is to significantly reduce the sampling
rate fs below the Nyquist rate fs > 2B; and thereby either increase the available bandwidth B
one can observe or lower the demands put upon the RF system [30, 31, 79, 80]. The reduction of
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the sampling rate below the Nyquist rate is possible because most signals are sparse, meaning that
they can be fully described by very few values when represented in a suitable basis [86]. Because
the wideband spectrum is generally underutilized, as only a few of the overseen subbands are
concurrently active (this is the main motivation for introducing cognitive radio in the first place),
the processed wideband signal x is inherently sparse in the frequency domain [79]. The minimum
required sampling rate is thus proportional to the joint bandwidth of the active subbands BA, instead
of the entire monitored spectrum bandwidth B. Therefore, CS appears to be a good candidate for
wideband spectrum sensing. One however, has to note that CS itself does not incorporate signal
detection. Only in conjunction with other signal detection methods is CS able to function as a
spectrum sensing method. Because of its complexity, only a brief overview of CS will be given here.
For a more rigorous treatment of the topic, consult [86, 148].

Detector

Let y ∈ C
M denote the sub-Nyquist samples of the data x ∈ C

N , which encompasses the full
wideband signal and its active transmissions, captured at or above the Nyquist rate. They are
related via

y = Φx (B.18)

where Φ ∈ C
M×N is called the measurement matrix [79, 86]. Φ is a random matrix with some entries

set to non-zero values. While the choice of Φ is of critical importance, it will not be discussed any
further here.

The task at hand is to reconstruct the original signal x from y using very few samples; that is
M ≪ N . The compressible signal x may be written as a sparse vector s ∈ C

N (containing mostly
zeros) in terms of a transform basis matrix

x = Ψs (B.19)

with Ψ ∈ C
N×N [31, 79, 86]. A possible basis matrix Ψ could be the DFT matrix, as presented in

appendix A.3.3. The vector x is called K-sparse in Ψ, if there are exactly K non-zero elements in
s, with K < M [86]. Therefore, compressed sensing involves finding the sparsest vector s that is
consistent with the measurements y

y = Φx = ΦΨs. (B.20)

The sparsest solution to this underdetermined system is the ŝ that satisfies the following optimization
problem

ŝ = arg min
s
‖s‖0 s.t. ‖ΦΨs− y‖2 < ε (B.21)

where ‖·‖0 denotes the L0 pseudo-norm (given by the number of nonzero entries in s) and ‖·‖2
denotes the L2 norm [30, 79, 86]. The effect of WGN can be modeled by ε, which should be chosen
proportional to the noise magnitude.

Limitations

With CS being a relatively recent topic, the amount of ongoing research and development is tremen-
dous [30, 31, 79, 80, 86, 148]. Thus, no clear implementation or method has yet emerged in the
realm of spectrum sensing, complicating practical implementations. There are no reliable perfor-
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mance metrics available, which could aid in designing a reliable spectrum sensing system. CS, in
general, lacks the stability and robustness of Nyquist-based methods required by SALSAT (CT-
03), especially in low SNR environments [86]. Additionally, CS requires specialized RF sampling
hardware to be effectively deployed, which SALSAT does not have. CS also relies on solving a com-
putationally complex optimization problem, making a real-time implementation on SALSAT not
feasible (CT-06, CT-05). Finally, CS-based spectrum sensing on SALSAT is not a necessity, as the
spectrum bands of interest are not “super” wide (see table 1.1). The LMS7002M RF transceiver and
the SALSAT computation system can handle the required bandwidth. Nonetheless, it could very
well be possible that future missions, with higher bandwidth requirements and more constrained
RF resources, could benefit from CS-based spectrum sensing.
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C. 3D Spectrograms

Figure C.1.: 3D spectrogram visualization of the in fig. 4.2 presented wideband signal
(made with SpecSens by employing non-causal filtering).
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Figure C.2.: 3D spectrogram visualization of the in fig. 4.3 presented Doppler shift signal
(made with SpecSens by employing non-causal filtering).
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D. Monte Carlo Simulation Algorithm

Algorithm 1 SpecSens Monte Carlo simulation

Input: Gens, Itrs, Seed, σ2

w
, σ2

s
, desired PFA, . . .

Output: PFA, PD
1: λ← threshold(PFA, σ

2

w
)

2: Seeds← seedSequence(Seed)
3: Results← Null
4: for i← 1 to Gens do

5: P ← randomEnvironment(Seeds[i])
6: W ← noiseSource(P, σ2

w
)

7: S ← signalSource(P, σ2

s
)

8: for j ← 1 to Itrs do

9: w ←W.get()
10: s← S.get()
11: if P.random() == True then

12: x = s+ w
13: else

14: x = w
15: T = detector(x)
16: if T > λ then

17: Record True
18: else

19: Record False
20: Results[i]← store detection results

21: Print overall Results
22: PFA, PD ← overall Results
23: return PFA, PD

Figure D.1.: Simplified Monte Carlo simulation pseudocode of the algorithm used by SpecSens.
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E. Software Repository Structure

High-level structure of SpecSens package directories:

1. eigenvalue_detect/ - Eigenvalue detection algorithms based on signal covariance matrices.
2. energy_detect/ - Energy detector and functions to calculate performance statistics (prob.

of false alarm, prob. of detection, etc.).
3. noise_estimation/ - Noise estimation methods and related utilities.
4. plot/ - Plotting functions to visualize signals and detection results.
5. signal/ - Signal and noise generators used mainly for simulations, as well as some utilities

that simplify working with signals.
6. simulation/ - Simulations to evaluate performance statistics.
7. wideband_detect/ - Wideband detection algorithms (wideband energy detector, wavelet

edge detector, etc.).

Selection of Jupyter Notebooks demonstrating and visualizing signals and detection methods:

1. 01_signal_and_noise.ipynb - Basic overview of complex signal and noise generation, as
well as time domain visualization.

2. 02_simple_energy_detector.ipynb - Simple narrow band time domain energy detector.
3. 03_energy_detector_statistics.ipynb - Analytical performance statistics overview and

comparison (prob. of false alarm, prob. of detection, etc.). Comparison between Chi-square
and CLT statistics.

4. 04_energy_detector_simulation.ipynb - Simulation using simple energy detector and
comparison between analytical and numerical statistics.

5. 05_short_time_fourier_transform.ipynb - Short-time Fourier transform and frequency
domain visualization.

6. 06_wideband_signal.ipynb - Wideband signal generation using signal matrix.
7. 06a_doppler_signal.ipynb - Doppler signal generation realistically reproducing Doppler

shifts.
8. 07_wideband_detect.ipynb - Short-time Fourier transform based wide band energy de-

tection.
9. 07a_wideband_detect_simulation.ipynb - Simulation of wide band energy detection.

10. 07b_wideband_detect_doppler.ipynb - Wideband detection of Doppler signal.
11. 08_edge_detect.ipynb - Spectrum edge detection using wavelet transforms.
12. 09_variable_band_detect.ipynb - Variable band wideband energy detection using edge

detection.
13. 09a_variable_band_detect_doppler.ipynb - Variable band wideband energy detection

of Doppler signal.
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14. 10_noise_estimation_simulation.ipynb - Energy detection using noise estimation.
15. 11_eigenvalue_detector.ipynb - Eigenvalue detector based on covariance matrix.
16. 12_eigenvalue_detector_simulation.ipynb - Simulation of eigenvalue detector.
17. 13_eigenvalue_detector_filter.ipynb - Eigenvalue detector with FIR bandpass filter.
18. 14_eigenvalue_detector_whitening.ipynb - Eigenvalue detector with FIR bandpass fil-

ter using noise whitening.
19. 15_eigenvalue_simulation_whitening.ipynb - Simulation of eigenvalue detector with

bandpass filter and noise whitening.
20. 16_eigenvalue_noise_estimation.ipynb - Noise power estimation using covariance ma-

trix eigenvalues.
21. 17_eigenvalue_noise_estimation_simulation.ipynb - Simulation of wideband energy

detection using eigenvalue noise power estimation.
22. 18_noise_estimation_comparison.ipynb - Comparison simulation of noise estimation

techniques.
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